Биологические основы функционирования нейрона
Под нейронными сетями подразумеваются вычислительные структуры, которые моделируют простые биологические процессы, ассоциируемые с процессами человеческого мозга. Они представляют собой распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Элементарным преобразователем в данных сетях является нейрон, названный так по аналогии с биологическим прототипом. Нейрон (нервная клетка) особая биологическая клетка, которая обрабатывает информацию. Искусственный нейрон Нейрон состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя. Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи, (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента - выхода сумматора. На рис.1 показана его структура.
Рис. 1 Структура искусственного нейрона
Эта функция называется функцией активации нейрона. Нейрон реализует скалярную функцию векторного аргумента. Математическая модель нейрона: где wi – вес синапса, i = 1... n; b - значение смещения; s - результат суммирования; xi - компонент входного вектора (входной сигнал), i = 1... n; у - выходной сигнал нейрона; п - число входов нейрона; f - нелинейное преобразование (функция активации). В общем случае входной сигнал, весовые коэффициенты и смещение могут принимать действительные значения, а во многих практических задачах - лишь некоторые фиксированные значения. Выход (у) определяется видом функции активации и может быть как действительным, так и целым.
Синаптические связи с положительными весами называют возбуждающими, с отрицательными весами - тормозящими. Функции активации Одной из наиболее распространенных функций активации является нелинейная функция активации с насыщением, так называемая логистическая функция или сигмоид (функция S-бразного вида): При уменьшении а сигмоид становится более пологим, в пределе при а = 0 вырождаясь в горизонтальную линию на уровне 0,5, при увеличении а сигмоид приближается к виду функции единичного скачка с порогом Т. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне (0, 1). Одно из ценных свойств сигмоидальной функции - простое выражение для ее производной: Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.
Таблица 1 Функции активации нейронов
Читайте также: A) система знаний об общих и частных политико-юридических закономерностях возникновения, развития и функционирования государственно-правовых явлений Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|