Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Иерархия сложности функционально детерминированных систем




Если отождествить состояния S с отображениями Н (А, В), то в качестве обратной связи в системе будет фигурировать отображение Ф: В > Н (А, В).

Функционально детерминированная система с ассимилированным элементом Ф может быть описана с помощью пары отображений (f; Ф):

f: А > В, Ф: В > Н (А, В),

где f є Н (А, В).

Система (f, Ф) полностью совпадает с определением так называемой абстрактной биологической системы Р. Розена [ 13 ], который провел ряд исследований этих систем с использованием аппарата современной алгебры (в частности, аппарата теории категорий). Определение Р. Розена удобно в том отношении, что элемент среды, реализующий обратную связь в системе, представлен в нем в явном виде и сама ассимиляция элемента системой формально выражается простым присоединением функции Ф к функции f из набора Н (А, В). Данное определение подсказывает путь к построению более сложных систем.

Рассмотрим множество элементов среды типа Ф и обозначим его Н (В, Н (А, В)). Это множество включает в себя целый набор различных типов обратных связей и может быть истолковано как множество состояний ассимилированной части среды, обеспечивающей более высокий порядок функционирования в биологической системе.

Соответственно обратная связь более высокого уровня может быть описана отображением G: В > Н (В, Н (А, В)). Вся система функционирует следующим образом. Вначале на основании реакции системы осуществляется выбор состояния среды (т.е. выбор типа обратной связи низшего уровня). Затем полученная информация используется для выбора состояния системы. Наконец, на основании значения независимого входа системы и выбранного ее состояния осуществляется акт функционирования, приводящий к новому значению выхода (реакции) системы.

Таким образом, обратные связи более высокого уровня резко усложняют процесс функционирования системы. Возникает своего рода иерархия сложности.

В работе Р. Розена показывается, что наличие обратных связей типа G позволяет построить схему воспроизводства "генетической структуры" (по терминологии Р. Розена) в абстрактных биологических системах. В работе М. Арбиба указывается на возможность формального описания процессов эволюции биологических систем как систем с переменной "генетической структурой" опять-таки благодаря введению обратных связей более высокого уровня.

Понятие абстрактной биологической системы Р. Розена, по-видимому, не ограничивается только сферой биологических явлений. Оно может быть полезным как некоторый формальный аппарат для общего описания различных кибернетических систем при надлежащей интерпретации множеств А, В, Н (А, В).

Рассмотрим в терминах функционально детерминированных систем типа систем Р. Розена иерархию сложности принятия решений в социально-экономических системах.

Пусть b є В – некоторая цель, которую мы хотим достичь с помощью системы (f, Ф). Тогда элемент Ф выступает как функция принятия решений: по заданному значению цели b выбирается такая программа действий f, при которой достигается намеченная цель. Элементы из А суть ресурсы, которые мы черпаем из окружающей среды. Иногда выясняется, что достичь результата b є В нельзя ни при каких f є Н (А, В). В современной практике планирования такое случается нередко. В этих случаях корректируется цель. Если же, напротив, оказывается, что существует несколько или даже целый набор программ, реализующих заданную цель, то стремятся найти среди этих программ такую, которая предпочтительна с точки зрения того или иного критерия оптимальности (минимум затрат, максимум прибыли и т.д.).

Гораздо более сложной задачей является выбор способа принятия решений? из некоторого возможного множества Н (В, Н (А, В)), представляющего собой более высокий функциональный уровень в социальной системе. На этом уровне происходит формирование самой системы управления, обусловленное, как правило, неформализованными, качественными факторами социальной системы. На этом уровне, в частности, выбираются критерии оптимальности. Для системы народного хозяйства это уже вопрос общей экономической политики, вопрос реализации определенных принципов социально-экономического управления общества в целом.

Описанный выше процесс построения иерархии в системах принятия решений дает принципиальную основу для оценки сложности самих социально-экономических систем с точки зрения характера их функционирования и типа обратных связей. Такую сложность будем называть функциональной.

Первый уровень функциональной сложности – это собственно производственно-технологический процесс, или процесс производства, состоящий в преобразовании некоторого множества производственных ресурсов и факторов в продукты производства. Источником производственных ресурсов является природная среда. В качестве важнейшего производственного фактора, обусловливающего весь производственно-технологический процесс в наиболее существенных его точках, выступают трудовые ресурсы. Человек предстает одновременно как элемент среды и как потребитель продуктов производства.

Второй уровень функциональной сложности – это уровень реализации производственного управления. Система производственного управления обеспечивает целенаправленное течение производственно-технологического процесса путем воздействия на состав и объем технологического оборудования, на качество используемых ресурсов в соответствии с конкретным производственным заданием b є В. Выбор надлежащего производственно-технологического способа f из множества Н (А, В) обеспечивается путем проведения плановых расчетов по определенной методике Ф.

Выбор методики Ф относится уже к компетенции третьего уровня функциональной сложности. На этом уровне осуществляется разработка самих методов и принципов управления. Это область господства научно-технического прогресса, идеологии и политики.

Нетрудно видеть, что функциональная сложность социально-экономической системы в конечном итоге определяется сложностью процессов управления в ней. Последние же существенно зависят от уровня обратных связей, действующих в системе.

Особенность рассмотренного подхода к понятию сложности заключается в том, что здесь отходят на второй план такие параметры, как количество элементов, число и характер связей в системе. Например, человек и человеческая цивилизация, содержащая миллионы индивидов, сравнимы по сложности, поскольку в обоих случаях реализуются обратные связи типа G, относящиеся к третьему уровню сложности. В то же время мотылек – более сложная система, чем Галактика. Это, конечно, не значит, что число элементов и связей или их характер в системе вообще не играют никакой роли при оценке сложности. От числа элементов и связей зависит число состояний в системе, а следовательно, разнообразие ее функциональных свойств. Определенный отпечаток на функционирование системы накладывают также количественные характеристики входа и выхода системы (мощности множеств А и В). Все эти факторы могут быть использованы при оценке сложности систем в пределах любого из названных выше уровней сложности. Соответственно получаем промежуточные ступени сложности, которые до известной степени сглаживают переходы между уровнями.

Заметим, что имеется определенная смысловая корреляция между уровнями функциональной сложности систем и известными в философии формами движения материи. В частности, к первому уровню сложности могут быть отнесены в целом физическая (в том числе механическая) и химическая формы движения. Биологическую и социальную формы движения, в том числе человеческое – мышление, следует отнести к третьему уровню сложности. Причем между физической и химической формами движения различия менее существенны, чем, например, между физической и биологической формами. Мы можем их рассматривать как ступени внутри первого уровня. Аналогично биологическую и социальную формы движения можно рассматривать как ступени сложности внутри третьего уровня.

Что касается второго уровня сложности, то сюда попадают в основном сложные технические системы типа ЭВМ, которые, хотя и построены целиком из физических элементов, все же резко отличаются по своим функциональным свойствам от природных физических систем. В результате человеческой деятельности как бы заполняется пропасть между низшими и высшими формами движения материи (между первым и третьим уровнем сложности). Создавая системы с обратными связями, характерные для второго уровня сложности, человек сумел добиться значительного их сходства с системами третьего уровня по ряду функциональных признаков. Это сходство может быть еще более усилено путем увеличения числа состояний в системе. Тем не менее это сходство пока чисто внешнее. Следует понимать, что для перехода к третьему уровню сложности нужен качественный скачок, требующий реализации в системах обратных связей более высокого порядка.

Аналогичная ситуация функционального сходства существует между системами первого и второго уровней сложности. В неживой природе широко известны явления регулирования, которые придают физическим объектам характерные черты систем, имеющих обратные связи. Это так называемые явления авторегулирования, или квазиуправления (по Л. А. Петрушенко).

Примером авторегулирования могут служить химические процессы, протекающие в соответствии с принципом Ле Шателье. Например, при повышении температуры в химической системе возникают реакции, идущие с поглощением тепла, и, наоборот, при понижении температуры возникают реакции, приводящие к выделению тепла. Принцип Ле Шателье действует и в физических системах при фазовых превращениях вещества. Суть его заключается в том, что при изменении условий в равновесной системе, ведущем к нарушению ее устойчивости, в системе возникают процессы в таком направлении, чтобы скомпенсировать эффект произведенного воздействия.

Г. В. Бурковский приводит любопытный пример авторегулирования из области электрических явлений. Если поместить металлическую нить в баллон с водородом и пропускать по ней ток, то обнаружится, что сила тока почти не зависит от питающего нить напряжения. При увеличении напряжения нить нагревается проходящим по ней током, что повышает сопротивление как раз в такой степени, что сила тока, снижаясь, практически возвращается к первоначальному значению. При уменьшении напряжения происходит обратный процесс: сопротивление нити уменьшается и сила тока увеличивается, снова приближаясь к исходной величине.

Данное явление используется в так называемых барреторах – технических устройствах, предназначенных для стабилизации силы тока в электрических цепях. Г. В. Бурковский указывает, ссылаясь на работы А. А. Воронова и М. С. Неймана, что среди специалистов в области теории автоматического регулирования имеются разногласия относительно того, можно ли считать, что в барреторе существует обратная связь.

Простейшим примером авторегулирования может служить маятник, как и вообще любой колебательный (периодический) процесс. При отклонении маятника от положения равновесия проявляются силы, стремящиеся вернуть его к исходному положению.

Л. А. Петрушенко склонен рассматривать в качестве частных случаев квазиуправления даже такие явления, как флуктуация, инерция, а также проявление принципа наименьшего действия. При таком подходе (который, по-видимому, имеет под собой определенную философскую основу) в природе будет трудно найти системы, в которых бы нельзя было обнаружить квазиуправления в той или иной форме.

В чем же причина столь широкого распространения в природе явления авторегулирования? И можно ли говорить во всех этих случаях о наличии обратных связей? Изучая этот круг вопросов, Л. А. Петрушенко рассматривает авторегуляцию как всеобщую объективную закономерность, действующую в направлении повышения организованности систем и тем самым противопоставляющую себя другому фундаментальному закону природы – закону возрастания энтропии.

В этой связи Л. А. Петрушенко пишет: "Различие между авторегуляцией и возрастанием энтропии заключается в том, что каждое из них, будучи, так сказать, невольным условием возникновения "своего другого", есть одновременно условие ограничения и уменьшения его действия. В неизолированных системах, т.е. там, где авторегуляция возможна, возрастание энтропии ограниченно по своему действию. И наоборот, в изолированных системах, т.е. там, где авторегуляция невозможна, возрастание энтропии не имеет подобного ограничения. Авторегуляция ограничивает действие возрастания энтропии наиболее явно в той сфере, где авторегуляция существует в наиболее полной и развитой форме управления по принципу обратной связи (т.е. в сфере сравнительно высокоорганизованных систем), и сама испытывает ограничивающее действие возрастания энтропии главным образом в той сфере, где последнее действует в наиболее полной и развитой форме (т.е. в сфере относительно низкоорганизованных систем)".

Таким образом, отношение между авто регуляцией и возрастанием энтропии анализируется Л. А. Петрушенко как диалектическое противоречие, действующее в форме внутренней причины самодвижения материи. В этом отношении вскрывается онтологический статус принципа авторегуляции в природе.

В методологическом, логико-философском плане возможность рассмотрения авторегуляции (квазиуправления) как всеобщей объективной закономерности связана, видимо, с тем обстоятельством, что всякую систему можно изучать в рамках функционального подхода. Поскольку в среде, окружающей любую систему, почти всегда находятся другие системы, образующие в совокупности с первой функционально-замкнутую систему, мы всегда будем обнаруживать и обратные связи. Эти-то обратные связи и порождают явление авторегуляции.

Однако обратные связи не всегда бывают ассимилированы системой и структурно представлены в ней, как это характерно для кибернетических форм управления. В неживой природе они существуют скорее лишь как предпосылка, объясняющая принципиальную возможность возникновения высокоорганизованных систем, какими являются и человеческое общество, и животный мир.

С учетом сказанного становится понятным, почему естественные явления физического и химического порядка, обнаруживающие авторегуляцию, тем не менее не могут быть отнесены ко второму уровню сложности, где обратные связи предполагаются ассимилированными и структурно обозначенными в системе, а составляют лишь первый уровень сложности.

Функциональная классификация сложности систем по типу и характеру обратных связей дает принципиальную возможность развивать методологические подходы к упорядочению теоретико-системных представлений ж теоретических схем в том плане, как это делает, например, К. Боулдинг.

К. Боулдинг считает, что систематизация и упорядочение теоретических систем и понятий сообразно иерархии их сложности составляют основную задачу общей теории систем, которую он рассматривает как своего рода "систему Менделеева" применительно к элементам теоретических знаний. При этом аналогом "атомного веса" в этой системе является уровень сложности. Полагая, что сложность, или "уровень" теоретического анализа, в целом соответствует сложности так называемых исходных индивидов (объектов) различных эмпирических областей, К. Боулдинг выделяет следующие девять уровней сложности: 1) уровень статической структуры, 2) уровень простой динамической системы типа часового механизма, 3) уровень кибернетической системы типа термостата, 4) уровень клетки, 5) уровень растений, 6) уровень животных, 7) уровень человека, 8) уровень социальных организаций, 9) уровень трансцендентальных систем.

Последний (9-й) уровень К. Боулдинг не характеризует сколько-нибудь конкретно. Его скорее надо понимать как "резервный класс" для явлений, которые пока остаются для нас непостижимыми. Заметим, что К. Боулдинг не отождествляет уровень теоретического анализа с уровнем предмета исследования. Так, социальные исследования сегодняшнего дня он относит не к восьмому уровню, как можно было бы думать, если иметь в виду предмет исследования, а в основном ко второму. Лишь в последнее время, указывает К. Боулдинг, теоретические схемы социальных наук начали подниматься до третьего уровня.

Здесь нет необходимости сопоставлять классификацию К. Боулдинга с функциональной классификацией, поскольку первая фиксирует некую установившуюся градацию эмпирических областей, а вторая преследует цель выявить влияние обратных связей на сложность функционирования различных типов систем. Гораздо более интересен другой вопрос: как расчленятся теоретические схемы знания, если, воспользовавшись подходом К. Боулдинга к общей теории систем, принять в качестве единицы сложности уровни иерархии обратных связей в функционально определенных системах.

Встав на эту точку зрения, мы сразу же сталкиваемся с фактом принципиального различия кибернетического и физико-химического подходов к явлениям, ибо они относятся к различным классам функциональной сложности. Таким образом, нечего и пытаться прибегать к теоретическим схемам физики и химии для объяснения явлений,, протекающих в кибернетических системах, или проектировать на этой основе ЭВМ и другие средства переработки информации.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...