От кибернетики «черного ящика» к ИИ
В основу этого подхода был положен принцип, противоположный нейрокибернетике. Не имеет значения, как устроено «мыслящее» устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг. Сторонники этого направления мотивировали свой подход тем, что человек не должен слепо следовать природе в своих научных и технологических поисках. Так, например, очевиден успех колеса, которого не существует в природе, или самолета, не машущего крыльями, подражая птице. К тому же пограничные науки о человеке не смогли внести существенного теоретического вклада, объясняющего хотя бы приблизительно, как протекают интеллектуальные процессы у человека, как устроена память и как человек познает окружающий мир. Это направление искусственного интеллекта было ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. Существенный вклад в становление новой науки внесли ее «пионеры»: Маккарти (автор первого языка программирования для задач ИИ — ЛИСПа), Минский (автор идеи фрейма и фреймовой модели представления знаний), Нъю-элл, Саймон, Шоу, Хант и другие. В 1956-1963 гг. велись интенсивные поиски моделей и алгоритмов человеческого мышления и разработка первых программ на их основе. Представители существующих гуманитарных наук — философы, психологи, лингвисты — ни тогда, ни сейчас не в состоянии были предложить таких алгоритмов. Тогда кибернетики начали создавать собственные модели. Так последовательно были созданы и опробованы различные подходы. 1. В конце 50-х годов родилась модель лабиринтного поиска. Этот подход представляет задачу как некоторое пространство состояний в форме графа, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но для решения практических задач эта идея не нашла широкого применения. В первых учебниках по искусственному интеллекту [Хант, 1986; Эндрю, 1985] описаны эти программы — они играют.в игру «15», собирают «Ханойскую башню», играют в шашки и шахматы.
2. Начало 60-х — это эпоха эвристического программирования. Эвристика — правило, теоретически не обоснованное, которое позволяет сократить количество переборов в пространстве поиска. Эвристическое программирование — разработка стратегии действий на основе известных, заранее заданных эвристик [Александров, 1975]. 3. В 1963-1970 гг. к решению задач стали подключать методы математической логики. Робинсон разработал метод резолюций, который позволяет автоматически доказывать теоремы при наличии набора исходных аксиом. Примерно в это же время выдающийся отечественный1 математик Ю. С. Маслов предложил так называемый обратный вывод, впоследствии названный его именем, решающий аналогичную задачу другим способом [Маслов, 1983]. На основе метода резолюций француз Алъбер Кольмероэ в 1973 г. создает язык логического программирования Пролог. Большой резонанс имела программа «Логик-теоретик», созданная Нъюэлом, Саймоном и Шоу, которая доказывала школьные теоремы. Однако большинство реальных задач не сводится к набору аксиом, и человек, решая производственные задачи, не использует классическую логику, поэтому логические модели при всех своих преимуществах имеют существенные ограничения по классам решаемых задач. 4. История искусственного интеллекта полна драматических событий, одним из которых стал в 1973 г. так называемый «доклад Лайтхилла», который был подготовлен в Великобритании по заказу Британского совета научных исследований. Известный математик Д. Лайтхилл, никак с ИИ профессионально не связанный, подготовил обзор состояния дел в области ИИ. В докладе были признаны определенные достижения в области ИИ, однако уровень их определялся как разочаровывающий, и общая оценка была отрицательная с позиций практической значимости. Этот отчет отбросил европейских исследователей примерно на 5 лет назад, так как финансирование ИИ существенно сократилось.
5. Примерно в это же время существенный прорыв в развитии практических приложений искусственного интеллекта произошел в США, когда к середине 1970-х на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы (ЭС). Стал применяться новый подход к решению задач искусственного интеллекта — представление знаний. Созданы MYCIN и DENDRAL [Shortliffe, 1976; Buchanan, Feigenbaura, 1978], ставшие уже классическими, две первые экспертные системы для медицины и химии. Существенный финансовый вклад вносит Пентагон, предлагая базировать новую программу министерства обороны США (Strategic Computer Initiative — SCI) на принципах ИИ. Уже вдогонку упущенных возможностей в начале 80-х объявлена глобальная программа развития новых технологий ESPRIT (Европейский Союз), в которую включена проблематика искусственного интеллекта. 6. В ответ на успехи США в конце 70-х в гонку включается Япония, объявив о начале проекта машин V поколения, основанных на знаниях. Проект был рассчитан на 10 лет и объединял лучших молодых специалистов (в возрасте до 35 лет) крупнейших японских компьютерных корпораций. Для этих специалистов был создан специально новый институт ICOT, и они получили полную свободу действий, правда, без права публикации предварительных результатов. В результате они создали достаточно громоздкий и дорогой символьный процессор, программно реализующий ПРОЛОГо-подобный язык, не получивший широкого признания. Однако положительный эффект этого проекта был очевиден. В Японии появилась значительная группа высококвалифицированных специалистов в области ИИ, которая добилась существенных результатов в различных прикладных задачах. К середине 90-х японская ассоциация ИИ насчитывает 40 тыс. человек.
Начиная с середины 1980-х годов, повсеместно происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам. Издаются десятки научных журналов, ежегодно собираются международные и национальные конференции по различным направлениям ИИ. Искусственный интеллект становится одной из наиболее перспективных и престижных областей информатики (computer science). История искусственного интеллекта В России
В 1954 г. в МГУ начал свою работу семинар «Автоматы и мышление» под руководством академика Ляпунова А. А. (1911-1973), одного из основателей российской кибернетики. В этом семинаре принимали участие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились два основных направления — нейрокибернетики и кибернетики «черного ящика». В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. В Ленинграде (ЛОМИ — Ленинградское отделение математического института им. Стеклова) создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» М. М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы ИИ внесли выдающиеся ученые ЦетлинМ.Л., Пушкин В. Н., Гаврилов М. А, чьи ученики и явились пионерами этой науки в России (например, знаменитая Гавриловская школа). В 1965-1980 гг. происходит рождение нового направления — ситуационного управления (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал проф. Поспелов Д. А. Были разработаны специальные модели представления ситуаций — представления знаний [Поспелов, 1986]. В ИПМ АН СССР был создай язык символьной обработки данных РЕФАЛ [Тургин, 1968].
При том, что отношение к новым наукам в советской России всегда было настороженное, наука с таким «вызывающим» названием тоже не избежала этой участи и была встречена в Академии наук в штыки [Поспелов, 1997]. К счастью, даже среди членов Академии наук СССР нашлись люди, не испугавшиеся столь необычного словосочетания в качестве названия научного направления. Двое из них сыграли огромную роль в борьбе за признание ИИ в нашей стране. Это были академики А. И. Берг и Г. С. Поспелов. Только в 1974 году при Комитете по системному анализу при президиуме АН СССР был создан Научный совет по проблеме «Искусственный интеллект», его возглавил Г. С. Поспелов, его заместителями были избраны Д. А. Поспелов и Л. И. Микулич. В состав совета входили на разных этапах М. Г. Гаазе-Рапопорт, Ю. И. Журавлев, Л. Т. Кузин, А. С. Нариньяни, Д. Е. Охоцимский, А. И. Поло-винкин, О. К. Тихомиров, В. В. Чавчанидзе. По инициативе Совета было организовано пять комплексных научных проектов, которые были возглавлены ведущими специалистами в данной области. Проекты объединяли исследования в различных коллективах страны: «Диалог» (работы по пониманию естественного языка, руководители А. П. Ершов, А. С. Нариньяни), «Ситуация» (ситуационное управление, Д. А. Поспелов), «Банк» (банки данных, Л. Т. Кузин), «Конструктор» (поисковое конструирование, А. И. Половинкин), «Интеллект робота» (Д. Е. Охоцимский). В 1980-1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300). В 1988 г. создается АИИ — Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президентом Ассоциации единогласно избирается Д. А. Поспелов, выдающийся ученый, чей вклад в развитие ИИ в России трудно переоценить. Крупнейшие центры — в Москве, Петербурге, Пе-реславле-Залесском, Новосибирске. В научный совет Ассоциации входят ведущие исследователи в области ИИ — В. П. Гладун, В. И. Городецкий, Г. С. Осипов, Э. В. Попов, В. Л. Стефанкж, В. Ф. Хорошевский, В. К. Финн, Г. С. Цейтин, А. С. Эрлих и другие ученые. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, раз в два года собираются объединенные конференции, издается научный журнал. Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 80-х гг. на прикладных работах начинает сказываться постепенное отставание в технологии. На данный момент отставание в области разработки промышленных интеллектуальных систем составляет порядка 3-5 лет.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|