Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Интеллектуальные роботы (robotics)




 

Идея создания роботов далеко не нова. Само слово «робот» появилось в 20-х годах, как производное от чешского «робота» — тяжелой грязной работы. Его автор — чешский писатель Карел Чапек, описавший роботов в своем рассказе «Р.У.Р».

Роботы — это электротехнические устройства, предназначенные для автоматизации человеческого труда.

Можно условно выделить несколько поколений в истории создания и развития робототехники:

I поколение. Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы.

II поколение. Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока используются мало.

III поколение. Самоорганизующиеся или интеллектуальные роботы. Это — конечная цель развития робототехники. Основные нерешенные проблемы при создании интеллектуальных роботов — проблема машинного зрения и адекватного хранения и обработки трехмерной визуальной информации.

В настоящее время в мире изготавливается более 60 000 роботов в год. Фактически робототехника сегодня — это инженерная наука, не отвергающая технологий ИИ, но не готовая пока к их внедрению в силу различных причин.

Обучение и самообучение (machine

Learning)

 

Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний на основе анализа и обобщения данных [Гаек, Гавранек, 1983; Гладун, 1994; Финн, 1991]. Включает обучение по примерам (или индуктивное), а также традиционные подходы из теории распознавания образов.

В последние годы к этому направлению тесно примыкают стремительно развивающиеся системы data mining — анализа данных и knowledge discovery — поиска закономерностей в базах данных.

Распознавание образов (pattern

Recognition)

 

Традиционно — одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время практически выделившееся в самостоятельную науку. Ее основной подход — описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой [Справочник по ИИ, 1990].

Новые архитектуры компьютеров (new

Hardware platforms and architectures)

 

Самые современные процессоры сегодня основаны на традиционной последовательной архитектуре фон Неймана, используемой еще в компьютерах первых поколений. Эта архитектура крайне неэффективна для символьной обработки. Поэтому усилия многих научных коллективов и фирм уже десятки лет нацелены на разработку аппаратных архитектур, предназначенных для обработки символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных, параллельным и векторным компьютерам [Амамия, Танака, 1993].

И хотя удачные промышленные решения существуют, высокая стоимость, недостаточное программное оснащение и аппаратная несовместимость с традиционными компьютерами существенно тормозят широкое использование новых архитектур.

Игры и машинное творчество

 

Это, ставшее скорее историческим, направление связано с тем, что на заре исследований ИИ традиционно включал в себя игровые интеллектуальные задачи — шахматы, шашки, го. В основе первых программ лежит один из ранних подходов — лабиринтная модель мышления плюс эвристики. Сейчас это скорее коммерческое направление, так как в научном плане эти идеи считаются тупиковыми.

Кроме того, это направление охватывает сочинение компьютером музыки [Зарипов, 1983], стихов, сказок [Справочник по ИИ, 1986] и даже афоризмов [Любич, 1998]. Основным методом подобного «творчества» является метод пермутаций (перестановок) плюс использование некоторых баз знаний и данных, содержащих результаты исследований по структурам текстов, рифм, сценариям и т. п.

Другие направления

 

ИИ — междисциплинарная наука, которая, как мощная река по дороге к морю, вбирает в себя ручейки и речки смежных наук. Выше перечислены лишь те направления, которые прямо или косвенно связаны с основной тематикой учебника — инженерией знаний. Стоит лишь взглянуть на основные рубрикаторы конференций по ИИ, чтобы понять, насколько широко простирается область исследований по ИИ:

• генетические алгоритмы;

• когнитивное моделирование;

• интеллектуальные интерфейсы;

• распознавание и синтез речи;

• дедуктивные модели;

• многоагентные системы;

• онтологии;

• менеджмент знаний;

• логический вывод;

• формальные модели;

• мягкие вычисления и многое другое.

Конечно, невозможно в рамках одного учебника рассмотреть все многообразие подходов и идей в области ИИ. Однако некоторые новые направления будут подробнее описаны в главах 5, 8, 9.

Представление знаний и вывод на

Знаниях

Данные и знания

 

При изучении интеллектуальных систем традиционно возникает вопрос — что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным.

 

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

1. D1 — данные как результат измерений и наблюдений;

2. D2 — данные на материальных носителях информации (таблицы, протоколы, справочники);

3. D3 — модели (структуры) данных в виде диаграмм, графиков, функций;

4. D4 — данные в компьютере на языке описания данных;

5. D5 — базы данных на машинных носителях информации.

Знания основаны на данных, полученных эмпирическим путем. Они представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности.

При обработке на ЭВМ знания трансформируются аналогично данным.

1. Z1 — знания в памяти человека как результат мышления;

2. Z2 — материальные носители знаний (учебники, методические пособия);

3. Z3 — поле знаний — условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих;

4. Z4 — знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы — см. далее);

5. Z5 — база знаний на машинных носителях информации. Часто используется такое определение знаний.

 

 

Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсионал понятия — это определение его через соотнесение с понятием более высокого уровня абстракции с указанием специфических свойств. Интенсионалы формулируют знания об объектах. Другой способ определяет понятие через соотнесение с понятиями более низкого уровня абстракции или перечисление фактов, относящихся к определяемому объекту. Это есть определение через данные, или экстенсионал понятия.

Пример 1.1

Понятие «персональный компьютер». Его интенсионал: «Персональный компьютер — это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за $2000-3000».

Экстенсионал этого понятия: «Персональный компьютер — это Mac, IBM PC, Sinkler...»

 

Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний — базы знаний (небольшого объема, но исключительно дорогие информационные массивы). База знаний — основа любой интеллектуальной системы. Знания могут быть классифицированы по следующим категориям:

Поверхностные — знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области.

Глубинные — абстракции, аналогии, схемы, отображающие структуру и природу процессов, протекающих в предметной области. Эти знания объясняют явления и могут использоваться для прогнозирования поведения объектов.

Пример 1.2

Поверхностные знания: «Если нажать на кнопку звонка, раздастся звук. Если болит голова, то следует принять аспирин».

Глубинные знания: «Принципиальная электрическая схема зввонка и проводки. Знания физиологов и врачей высокой квалификации о причинах, видах головных болей и методах их лечения».

 

Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет универсальных методик, позволяющих выявлять глубинные структуры знаний и работать с ними.

Кроме того, в учебниках по ИИ знания традиционно делят на процедурные и декларативные. Исторически первичными были процедурные знания, то есть знания, «растворенные» в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако,с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), то есть увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, то есть знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...