Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тирания энтропии. Энтропия – это беспорядок. Энтропия и квантовая физика




Тирания энтропии

 

Как реальные молекулы могут разместиться в реальной емкости? Как поделят имеющуюся энергию? Главная идея Больцмана заключалась в том, что состояние с наибольшим статистическим весом будет доминировать. Более высокая энтропия выигрывает, и выигрывает сильно, потому что соответствующие вероятности определяются не логарифмом W, а самим W, то есть числом способов осуществления этого состояния, которое всегда будет больше его логарифма.

Результаты в статистической физике требуют предположения, что вероятность любого состояния зависит от числа способов его достижения. Это предположение не самоочевидно. Оно называется эргодической гипотезой [110]. На самом деле оно в строгом смысле неистинно. Если у вас две емкости, одна из которых заполнена газом, а другая пуста, состояние максимальной энтропии наступит, когда каждая емкость заполнится только наполовину. Но если эти емкости не соединены между собой, газ не может перемещаться из одной в другую. Таким образом, состояние максимальной вероятности оказывается недостижимым.

Это пояснение может звучать весьма тривиально, но оно очень важно с точки зрения понимания времени. Оно заставляет нас дать энтропии другое определение: энтропия не логарифм числа способов наполнения емкостей, а логарифм доступных таких способов. Подсчитывая их, не принимайте во внимание способы наполнения емкостей, нарушающие какие‑ то другие законы физики (например, что молекулы могут проникать сквозь стенки сосудов). Далее в этой книге статистический вес W будет обозначать число доступных способов наполнения емкостей.

Человек не в состоянии ограничить рост энтропии, но может установить некий контроль над достижением доступных состояний. Я попытаюсь доказать, что такой контроль можно считать ключевым в свободе выбора человека. Мы не в силах уменьшить энтропию Вселенной, но можем сделать свой выбор: соединять или нет две емкости с газом. Если не соединим, энтропия Вселенной будет меньше, чем в противном случае.

Мы можем также управлять локальной энтропией, снижая ее по нашему желанию. Это делает, например, кондиционер воздуха. Он охлаждает воздух внутри помещения, уменьшая энтропию в доме, и выбрасывает тепло наружу. Увеличение энтропии в чуть потеплевшем воздухе снаружи больше, чем количество энтропии, уменьшившееся внутри. Таким образом, использование этого устройства охлаждает нас и снижает нашу собственную энтропию, но повышает общую энтропию Вселенной.

Жизнь представляет собой локальный пример уменьшения энтропии. Растения забирают немногочисленный рассеянный углерод из воздуха, соединяют его с водой, получаемой из почвы, и при участии энергии солнечного света создают сложные молекулы крахмалов, которые организуются в высокоупорядоченные структуры. Энтропия молекул, из которых состоят растения, уменьшается, но общая энтропия повышается, главным образом за счет тепла, выбрасываемого в атмосферу.

 

Энтропия – это беспорядок

 

Часто говорят, что энтропией измеряется степень беспорядка и хаоса. Состояние газа с низкой энтропией подразумевает нахождение молекул на одной области пространства с высокой степенью организации. Состояние с высокой энтропией означает, что молекулы распределены в значительном пространстве и не упорядочены. Высокая энтропия относится к состоянию, которое возникает с большой вероятностью в результате случайных процессов. Низкая энтропия – такая организация вещества, которое в реальности маловероятно. Высокоорганизованное состояние, как следует из самого названия, не может быть итогом случайных природных процессов[111].

В принципе, если вы имеете дело с такой системой, как, например, идеальный тепловой двигатель Карно для получения полезной механической работы путем использования горячих газов, общая энтропия может остаться постоянной. Но этот идеальный двигатель пока не создан. На практике энтропия всегда увеличивается – в том смысле, что увеличивающийся хаос неизбежен. Перенос тепла от горячего объекта к холодному увеличивает энтропию. Наша Вселенная теряет свою организованность и медленно, но верно, становится все более подвержена случайностям.

Разбейте чашку – и вы увеличите энтропию ее молекул. Будучи разъединенными, они находятся ближе к первоначальному естественному случайному состоянию. Попробуйте выбросить эти молекулы в космическое пространство, позвольте им рассеяться – вы нарушите порядок и увеличите энтропию. Создавая чашку, мы уменьшаем локальную энтропию за счет остальной Вселенной. Бо льшая часть того, что мы считаем цивилизацией, основана на локальных уменьшениях энтропии.

 

Энтропия и квантовая физика

 

Статистическая физика удивительным образом привела к открытию физики квантовой. Нагрейте какой‑ то предмет до нескольких тысяч градусов по Фаренгейту, и он засветится видимым светом: этот свет будет красным. Статистическая физика объясняла это излучением вибрацией молекул в предмете[112]. Считалось, что движущиеся при этом электрические заряды порождали свет. Но расчеты, сделанные с позиций статистической физики, показывали, что это излучение должно иметь бесконечную энергию при уменьшении длины волны излучения (то есть смещении в ультрафиолетовую область), и эту проблему назвали ультрафиолетовой катастрофой [113]. По сути это знаменовало большие затруднения и даже крах статистической физики.

Немецкий физик Макс Планк в связи с этим предложил странное на первый взгляд и «нефизическое» решение. Он нашел уравнение, которое объясняло фактические наблюдения. Сегодня мы называем его формулой Планка. Это была математика, а не физика. Затем ученый начал искать новый физический принцип, который, в случае истинности, объяснил бы получение уравнения. Решение было найдено: он понял, что атомы могут эмитировать свет только порциями, которые назвали квантовыми. Эта поразительная идея стала основным принципом квантовой физики.

Планку пришлось предположить: когда атом испускает свет частотой f, энергия этого света должна представлять собой произведение этой частоты на базовую единицу энергии h. Он записал формулу в таком виде:

 

E = hf.

 

Число h подобрал таким образом, чтобы наблюдаемое излучение от горячих объектов соответствовало его формуле. Сегодня мы знаем это число как постоянную Планка, и это одна из самых знаменитых величин. Ученые часто говорят, что любая формула, которая не содержит h, принадлежит классической физике, а та, которая эту константу содержит, находится в области квантовой.

Предположение Планка в 1901 году было сделано произвольно. Его формула соответствовала экспериментальным данным, однако предположение о том, что черное тело эмитирует свет порциями – квантами, не имело подтверждения. Спустя четыре года Эйнштейн понял, что несколько иная интерпретация гипотезы Планка может быть использована для объяснения совершенно другой загадки – фотоэлектрического эффекта. Сегодня на нем основана работа солнечных батарей и цифровых фотокамер. Этот эффект был открыт в 1887 году Генрихом Герцем (тем самым немецким ученым, который обнаружил радиоволны и чьим именем названа единица частоты герц, которая присутствует в повсеместно распространенном электричестве [с частотой 50 герц[114] ]).

Герц открыл, что свет, падающий на поверхность какого‑ то предмета, «выбивает» из него электрон. Одновременно он обнаружил, что энергия этого электрона зависит от цвета луча (то есть от его частоты), а не интенсивности. Это открытие было очень загадочным. Увеличивая интенсивность светового луча, Герц получал не электроны с увеличенной энергией, а рост их количества. Это наблюдение не имело особого смысла, если исходить из того, что свет – вид электромагнитного излучения.

Эйнштейн понял, что может объяснить фотоэлектрический эффект Герца, если предположит, что сам свет разделен на кванты. (Планк полагал, что на кванты делится атом. ) Эйнштейн назвал эти частицы света кванты; позже ученые назвали их фотонами. По существу, Эйнштейн открыл фотон. Во всяком случае, он был первым, кто признал его существование. Каждый фотон выбивает один электрон. Он сообщает этому электрону энергию hf. Таким образом, энергия электрона зависит от частоты света. Более интенсивный свет подразумевает, что в нем просто больше фотонов и что он «выбивает» больше электронов. Именно объяснение Эйнштейном фотоэлектрического эффекта принесло ему Нобелевскую премию в 1921 году.

По иронии судьбы квантовое объяснение эффекта фотоэлектричества утвердило Эйнштейна также в качестве одного из основателей квантовой физики. Ирония в том, что он никогда не принимал квантовую теорию, по крайней мере в том ее варианте, который стал доминировать в физике (речь идет о копенгагенской интерпретации квантовой механики).

 

* * *

 

Энтропия увеличивается. Время бежит вперед. Какая связь между ними? Простая или причинно‑ следственная? Артур Эддингтон утверждал, что энтропия и время связаны, но эта связь неочевидна. Энтропия не просто растет со временем, как заключила статистическая физика. Эддингтон считал, что все как раз наоборот: ведущим элементом здесь была энтропия. Энтропия оказывается причиной того, что время движется.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...