Миля за четыре минуты
Нетоксичные лечебные препараты по-прежнему не открыты, но не нежеланны. Джеймс Ф. Холланд
И почему это, спрашивается, поступление новых чудо-лекарств плетется далеко позади, если биология стремительно движется вперед? Какая-то подозрительная асимметрия между молекулярной биологией и, скажем, лечением рака легких. Льюис Томас. Жизни клетки, 1978 г.
Летом 1990 года, когда герцептин только вступал в первые испытания, еще одно лекарство, нацеленное на конкретный онкоген, начало долгое странствие к клиникам. Разработка именно этого лекарства — от рака к онкогену, от онкогена к целевой терапии — ярче любых других открытий знаменовала собой наступление новой эры в онкологии. Впрочем, для вступления в новую эру онкологам предстояло вернуться к старым наблюдениям — к своеобразной болезни, которую Джон Беннетт назвал «нагноением крови», Вирхов в 1847 году окрестил weiß es Blut, а более поздние исследователи — хронический миелоидный лейкоз, или ХМЛ. Более столетия вирховское «белокровие» существовало на периферии онкологии, но в 1973 году неожиданно заняло в ней центральное место. Исследуя клетки хронического миелоидного лейкоза, Джанет Роули выявила уникальное хромосомное нарушение, общее для всех лейкемических клеток. Эта аномалия, так называемая филадельфийская хромосома, была результатом транслокации, при которой «голова» двадцать второй хромосомы и «хвост» девятой хромосомы сливались, образуя новый ген. Работа Роули наводила на предположение, что клетки ХМЛ обладают явственной и уникальной генетической аномалией — вероятно, первым известным науке человеческим онкогеном.
Наблюдения Роули положили начало долгой охоте за таинственным химерным геном, получаемым при слиянии двадцать второй и девятой хромосом. Природа этого гена выявлялась шаг за шагом на протяжении целого десятилетия. В 1982 году команда голландских исследователей в Амстердаме выделила ген из девятой хромосомы и назвала его abl [44]. В 1984 году, в сотрудничестве с американскими коллегами в Мэриленде эта же группа изолировала партнера abl из двадцать второй хромосомы — ген под названием Bcr. Онкоген, образующийся при слиянии этих двух генов в клетках ХМЛ, получил название Bcr-abl. В 1987 году лаборатория Дэвида Балтимора в Бостоне «сконструировала» мышей, содержащих в клетках крови активированный онкоген Bcr-abl. У таких животных развивалась смертельная, поражающая селезенку лейкемия, которую более века назад Беннетт наблюдал у шотландского рабочего, а Вирхов — у поварихи. Эти данные доказывали, что Bcr-abl вызывает патологическое деление клеток ХМЛ.
Как и в случае любого другого онкогена, интерес исследователей обратился со структуры к функции, а именно — какие действия Bcr-abl вызывают лейкоз. Лаборатории Балтимора и Оуэна Витте исследовали функции аномального онкогена Bcr-abl и обнаружили, что, как и в случае src, продуцируемый им белок является киназой — белком, который прикрепляет фосфатную группу к другим белкам, тем самым запуская каскад клеточных сигналов. В нормальных клетках гены Bcr и abl существуют раздельно и жестко регулируются во время клеточного деления. В клетках же ХМЛ транслокация создает новую химеру — Bcr-abl, продуцирующую гиперактивную киназу. Эта киназа активирует сигнальный путь, заставляющий клетку непрестанно делиться.
В середине 1980-х годов, почти ничего не зная о достижениях молекулярных генетиков в изучении ХМЛ, группа химиков швейцарской фармацевтической компании «Сиба-Гейги» пыталась разработать лекарство, способное ингибировать киназы. Геном человека кодирует около пятисот различных киназ (из которых примерно девяносто относятся к тому же подклассу, что src и Bcr-abl). Каждая киназа присоединяет фосфатную группу к определенному набору клеточных белков. Таким образом, киназы действуют как молекулярный переключатель в клетках — включающий одни сигнальные пути и выключающий другие, что обеспечивает клетке координированный набор внутренних сигналов делиться, сжиматься, двигаться или умереть. Осознав ключевую роль киназ в физиологии клетки, базельская команда «Сиба-Гейги» надеялась открыть лекарство, которое бы могло избирательно активировать или блокировать киназы, тем самым манипулируя клеточными переключателями. Возглавлял группу Алекс Маттер, высокий, сдержанный и язвительный врач-биохимик. В 1986 году к Маттеру присоединился в этой охоте Ник Лайдон, английский биохимик из Лидса.
Химики-фармацевты нередко думают о молекулах в терминах внешностей и поверхностей. Они живут в мире топологии, воображение их касается молекул с тактильной сверхчувствительностью слепого. Если поверхность молекулы ровная, без четко выраженных особенностей, такой белок, как правило, «не поддается воздействию лекарств»: невыразительная, точно у профессионального игрока в покер, топология — плохая мишень для лекарственных препаратов. Но вот если поверхность белка испещрена глубокими расщелинами или карманами, из него может получиться отличная мишень для связывания с другой молекулой, а потому он потенциально «поддается воздействию лекарств». На счастье, киназы обладают по крайней мере одним глубоким карманом. В 1976 году группа японских исследователей, ищущих яды в морских бактериях, случайно обнаружила вещество под названием стауроспорин — крупную молекулу в форме несимметричного мальтийского креста, связывающуюся с карманом большинства киназ. Стауроспорин ингибировал десятки киназ, и яд из него вышел превосходный, однако как лекарство он никуда не годился, потому что не делал различия между киназами — активными или неактивными, полезными или вредными. Существование стауроспорина вдохновило Маттера. Если морские бактерии синтезируют вещество, неспецифично блокирующее киназы, то уж, верно, исследовательская группа сумеет сконструировать вещество, блокирующее в клетках лишь определенные киназы. В 1986 году Маттер и Лайдон нащупали путеводную нить. Испытав миллионы потенциальных молекул, они обнаружили молекулярный скелет, который, подобно стауроспорину, умещался в кармане киназы, тем самым блокируя ее. Впрочем, в отличие от стауроспорина обнаруженное соединение было достаточно простым. Маттер и Лайдон сконструировали десятки его вариаций в надежде, что какой-нибудь вариант обладает избирательным сродством к той или иной киназе. В чем-то их работа повторяла труд Пауля Эрлиха, который в 1890-е годы терпеливо повышал специфичность анилиновых производных, тем самым создав целую вселенную новых лекарств. История постоянно повторяется, но химия, как знали Маттер и Лайдон, повторяется с особым упорством.
Это была мучительная, однообразная игра — химия методом проб и ошибок. Йорг Циммерманн, талантливый химик из группы Маттера, создавал тысячи вариантов материнской молекулы и передавал их клеточному биологу, Элизабет Бухдунгер. Она проверяла новые молекулы на клетках, отсеивая те, что оказывались нерастворимы или ядовиты, а затем приносила Циммерманну на переделку, тем самым запуская новую эстафету навстречу все более специфическим и менее токсичным соединениям. «Вот так вот слесарь подгоняет ключи к замку, — говорил Циммерманн. — Чуть-чуть меняет форму ключа и проверяет. Годится? Если нет, меняет снова». К началу 1990-х годов методом этих постоянных подгонок и переделок получились десятки новых молекул, структурно похожих на изначально найденный Маттером ингибитор киназ. Проверив серию ингибиторов на различных клеточных киназах, Лайдон обнаружил, что они обладают специфичностью: например, одна молекула ингибировала src, не затрагивая при этом остальные киназы, а другая ингибировала abl, a src не трогала. Теперь Маттеру и Лайдону требовалось найти болезнь, к которой можно применить эту армию препаратов, — какую-нибудь разновидность рака, вызываемого заевшими гиперактивными киназами, которые можно было бы остановить при помощи специфического ингибитора киназ.
В конце 1980-х годов Ник Лайдон отправился в бостонский Онкологический институт Даны и Фарбера, чтобы выяснить там, способны ли синтезированные в Базеле ингибиторы киназ останавливать деление клеток какой-нибудь разновидности рака. Там он познакомился с Брайаном Друкером, молодым сотрудником института, недавно закончившим онкологическую практику и собиравшимся основать независимую лабораторию в Бостоне. Особенно интересовал Друкера хронический миелоидный лейкоз — рак, управляемый киназой Bcr-abl. Друкер был наслышан о коллекции киназо-специфичных ингибиторов Лайдона. Ему не понадобилось много времени на то, чтобы перейти к следующему логическому звену. «Меня со студенчества притягивала онкология, поскольку я читал исходные труды Фарбера об аметоптерине, и они оказали на меня огромное влияние, — вспоминал он. — Поколение Фарбера пыталось нацелиться на раковую клетку эмпирическим путем, но потерпело неудачу, поскольку в те дни не было достигнуто понимания механизмов рака. Идеи Фарбера были правильны, просто время неподходящее». У самого Друкера правильные идеи возникли в подходящее время. Снова, как и в случае Сламона и Ульриха, две половинки головоломки сложились воедино. У Друкера была группа пациентов с опухолью, вызванной специфической гиперактивной киназой. Лайдон и Маттер синтезировали целую коллекцию ингибиторов киназ, что хранилась в морозилках лаборатории «Сиба-Гейги» в Базеле. И где-то среди них, надеялся Друкер, спрятано лекарство его мечты — химический ингибитор киназы, обладающий специфичным сродством к Bcr-abl. Друкер предложил многообещающее сотрудничество между «Сиба-Гейги» и Онкологическим институтом Даны и Фарбера с целью испытания киназ на живых пациентах. Однако соглашения не вышло: группы юристов в Базеле и Бостоне так и не сумели договориться. Лекарства способны избирательно связывать киназы, а вот ученые и юристы не всегда ладят между собой, чтобы донести эти лекарства до пациентов. Породив длинный шлейф служебных записок, проект почил тихой и бесславной смертью. Однако Друкер не сдавался. В 1993 году он уехал из Бостона и основал лабораторию при Орегонском университете здравоохранения и науки в Портленде. Освободившись наконец от учреждения, заморозившего его сотрудничество, он немедленно позвонил Лайдону, желая восстановить былые связи. Лайдон сказал ему, что в «Сиба-Гейги» тем временем создана еще большая коллекция ингибиторов, среди которых выявлена молекула, обладающая высокоспецифичным сродством к Bcr-abl. Молекула получила название CGP57148. Многому научившись в Бостоне, Друкер с самым небрежным видом отправился в юридический отдел Орегонского университета и, не упоминая потенциальной значимости швейцарских препаратов, убедил юристов подписать нужные бумаги. «Все посмеивались надо мной, — вспоминает он. — Никто не верил, что лекарство сработает». Через две недели он получил из Базеля посылку с набором ингибиторов киназ.
Тем временем клинический мир ХМЛ постигало разочарование за разочарованием. В октябре 1992 года, за несколько месяцев до того, как CGP57148 пересекла Атлантику, чтобы попасть из базельской лаборатории Лайдона в руки Друкера в Орегоне, в итальянский город Болонья на интернациональную конференцию по ХМЛ съехались эксперты по лейкемии. Великолепное место проведения конференции пробуждало множество ассоциаций — Везалий некогда читал здесь лекции и преподавал в величавых амфитеатрах, развенчивая теорию Галена о происхождении рака. Однако новости на конференции звучали невеселые. В 1993 году основным методом лечения ХМЛ была аллогенная трансплантация костного мозга, схема, впервые разработанная в 1960-е годы в Сиэтле Доннеллом Томасом. Аллотрансплантация, при которой пациенту пересаживается чужой костный мозг, способна повысить выживаемость больных ХМЛ, однако полученные преимущества зачастую были так малы, что для точной их оценки требовались полномасштабные испытания. Даже трансплантологи, приехавшие в Болонью, мрачно признавали, что польза от методики невелика. «Без пересадки костного мозга избавиться от лейкемии невозможно, — заканчивалось одно исследование, — однако положительный эффект пересадки на общей выживаемости заметен лишь у подгруппы пациентов… чтобы оценить его, требуется много сотен случаев и не одно десятилетие». Подобно большинству специалистов по лейкозам, Друкер досконально знал эту мрачную статистику. «Все покровительственно твердили мне — рак, мол, очень сложен. Как будто я с этим спорил! » Набирающая силу догма гласила, что ХМЛ от природы устойчив к воздействию химиотерапии. Лейкемия и начиналась с единственной мутации по гену BCR-abl, однако к моменту ее расцвета в гене скапливалась уйма дополнительных мутаций, создающих настолько хаотичное генетическое завихрение, что самые разящие орудия химиотерапии оказывались бессильны. Изначально стимулирующее действие киназы BCR-abl меркло на фоне сильнодействующих мутаций. Друкер опасался, что в такой ситуации использовать для лечения один ингибитор киназы — все равно что тушить спичку, которая разожгла пламя лесного пожара. Летом 1993 года, получив от Лайдона долгожданный препарат, Друкер добавил его в культуру клеток ХМЛ, надеясь добиться незначительного эффекта. Клеточная культура отреагировала мгновенно и сразу: за ночь обработанные препаратом клетки погибли, так что в культуральных «матрасиках» плавали лишь сморщенные оболочки мертвых лейкозных клеток. Друкер был поражен. Введя лейкозные клетки мышам, он добился образования живых опухолей, а потом принялся лечить мышей новым средством. Как и в первом эксперименте, опухоли исчезли за считанные дни. Ответ на лекарство оказался специфичным, на нормальные мышиные клетки крови препарат никак не повлиял. Тогда Друкер принялся за третий эксперимент: взяв у нескольких пациентов с ХМЛ костный мозг, он добавил к нему CGP57148 прямо в чашке Петри. Все лейкемические клетки немедленно умерли, в чашке остались только нормальные клетки крови. Друкер вылечил лейкоз в пробирке. Свои наблюдения Друкер описал в короткой энергичной статье, опубликованной журналом «Нейчур медисин»: пять тщательно продуманных и чисто проведенных экспериментов, подводящих к простому выводу. «Этот препарат может быть полезен в лечении Bcr-abl -положительных лейкозов», — утверждалось в статье. Первым автором статьи стоял Друкер, главным автором — Лайдон, а Бухдунгер и Циммерман упоминались соавторами. Друкер ожидал, что его результаты приведут компанию «Сиба-Гейги» в экстаз: свершилась вековая мечта онкологии — получено лекарство, обладающее уникальной специфичностью к продукту онкогена в раковой клетке. Однако швейцарская компания находилась в процессе слияния с ее конкурентом, фармацевтическим гигантом «Сандоз». Новообразованная исполинская корпорация «Новартис» сочла уникальную специфичность препарата CGP57148 его главным, роковым недостатком. Дальнейшая разработка средства и доведение его до статуса клинического лекарства, рекомендованного для людей, требовали новых проверок — исследований на животных, клинических испытаний, которые обошлись бы компании в двести миллионов долларов. В США ХМЛ заболевает несколько тысяч человек ежегодно. Перспектива тратить сотни миллионов долларов ради нескольких тысяч человек «Новартис» не привлекала. Друкер внезапно оказался в вывернутом наизнанку мире, где академический ученый вынужден умолять фармацевтическую компанию провести клинические испытания ее же собственного продукта. У «Новартиса» нашлась уйма предсказуемых возражений: «Лекарство… не будет работать… окажется слишком токсичным… не принесет никаких денег». С 1995 по 1997 год Друкер постоянно летал из Бостона в Базель и обратно, стараясь убедить руководство компании продолжить клиническую разработку лекарства. «Либо поставьте (препарат) в клинические испытания, либо продайте мне лицензию», — настаивал он, считая, что если «Новартис» не захочет связываться с лекарством, то можно подыскать для этого другого химика. «В худшем случае я был готов попробовать сам», — вспоминает он. Он заранее собрал группу врачей для проведения потенциальных клинических испытаний лекарства на пациентах с ХМЛ. В группу входили Чарльз Сойерс из Калифорнийского университета Лос-Анджелеса, Моше Талпаз, гематолог из Хьюстона, и Джон Голдман из Хаммерсмитской больницы в Лондоне — общепризнанные авторитеты в области ХМЛ. Друкер рассказывал: «У меня в больнице был не один пациент с ХМЛ. Каждый день, возвращаясь домой, я давал себе обещание снова потеребить „Новартис“». В начале 1998 года руководство компании «Новартис» наконец дало согласие на синтез нескольких граммов препарата CGP57148, достаточных для испытания на ста пациентах. Друкеру дали единственный шанс, потому что для компании препарат CGP57148 — результат самой честолюбивой в истории программы разработки лекарств — был изначально провальным проектом.
Я впервые услышал о лекарстве Друкера осенью 2002 года, проходя резидентуру и сортируя пациентов по степени срочности в отделении «Скорой помощи» Массачусетской клинической больницы. Какой-то интерн пригласил меня на консультацию по поводу мужчины средних лет с диагнозом «хронический миелобластный лейкоз», поступившего в больницу с сыпью. Стоило мне это услышать, в голове сложились мгновенные выводы: пациенту сделали пересадку донорского костного мозга, сыпь является первым признаком грядущей катастрофы. Иммунные клетки чужого костного мозга атакуют организм больного, налицо конфликт «трансплантат против хозяина». Прогноз мрачный. Пациенту нужны стероиды, иммунодепрессанты и немедленный перевод на этаж трансплантации. Однако я ошибался. В красной папке с историей болезни не обнаружилось никаких упоминаний о пересадке костного мозга. Пациент протянул мне руку, демонстрируя сыпь, и в ярком свете неоновых ламп приемной я разглядел лишь несколько разрозненных и безвредных с виду прыщиков — ничего похожего на темную крапчатость реакции на трансплантат. В поисках объяснений я проверил, что за лекарства он принимает. В истории стоял только один препарат — гливек, лекарство Друкера, новое название препарата CGP57148[45]. Впрочем, сыпь была лишь незначительным побочным эффектом препарата. Основной эффект, хотя и незаметный с виду, был куда более драматическим. В мазке крови, положенном под микроскоп в лаборатории патологии на втором этаже, клетки нового пациента выглядели на удивление обычными. «Нормальные эритроциты, нормальные тромбоциты, нормальные лейкоциты», — шептал я себе под нос, медленно просматривая три основных типа клеток, не в силах увязать наблюдаемую мной картину с диагнозом. На мазке не обнаружилось ни единого лейкозного бласта. Если у пациента и вправду был ХМЛ, то в такой глубокой ремиссии, что болезнь не проявлялась ни в чем. К зиме 1998 года Друкер, Сойерс и Талпаз повидали дюжины подобных ремиссий. Первым пациентом Друкера стал шестидесятилетний пенсионер, бывший машинист, с Орегонского побережья. Он прочитал о лекарстве Друкера в местной газете и обратился к ученому, предлагая себя на роль лабораторной мыши. Друкер ввел ему маленькую дозу лекарства и весь день нервно ожидал появления признаков токсикации. К вечеру никаких побочных эффектов не проявилось, пациент был жив. «Наша молекула впервые попала в организм человека и запросто могла вызвать ужасную реакцию, но этого не произошло, — вспоминал Друкер. — Я испытал невероятное облегчение! » Друкер все повышал и повышал дозы: двадцать пять, пятьдесят, восемьдесят пять и сто сорок миллиграммов… Росло и число его пациентов. По мере повышения дозы эффект гливека проявлялся все отчетливее. У поступившей в клинику Друкера пациентки из Портленда количество лейкоцитов в крови было в тридцать раз выше нормы — сосуды и селезенка чуть не лопались от лейкозных клеток. После нескольких доз лекарства количество таких клеток начало стремительно падать, а через неделю нормализовалось. У других пациентов, которыми занимались Сойерс в Лос-Анджелесе и Талпаз в Хьюстоне, наблюдались такие же результаты — за несколько недель показатели крови у всех приходили в норму. Вести о новом лекарстве распространялись быстро. Разработка гливека совпала с появлениями форумов в Интернете. В 1999 году больные вовсю обменивались информацией онлайн. Нередко именно сами больные и рассказывали своим врачам о лекарстве Друкера, а если их врачи ничего не знали и не хотели верить, отправлялись в Орегон или Лос-Анджелес, чтобы попасть на испытания гливека. Из пятидесяти четырех пациентов, получавших высокие дозы лекарства на первой стадии испытаний, у пятидесяти трех наблюдался полный эффект в первые же дни после начала приема гливека. Пациенты продолжали лечение недели, потом месяцы — злокачественные клетки не возвращались. Если не лечить ХМЛ, то «хроническим» его можно считать лишь по сравнению с обычными формами лейкемии: по мере того как заболевание прогрессирует, симптомы становятся все более резкими и выраженными, так что большинство больных проживают всего от трех до пяти лет. В испытаниях гливека болезнь резко замедлялась, баланс нормальных клеток восстанавливался, нагноение крови исчезало. К июню 1999 года многие пациенты по-прежнему находились в глубокой ремиссии. Стало ясно, что гливек одержал неоспоримый успех, продолжающийся до сих пор. Гливек стал стандартным средством для пациентов с ХМЛ. Говоря об этом некогда смертельном заболевании, онкологи пользуются терминами «до-гливечная эра» и «после-гливечная эра». Хагоп Кантарян, врач из Онкологического центра Монро Данауэйя Андерсона, недавно так охарактеризовал воздействие, которое препарат оказал на ХМЛ: «До 2000 года, принимая пациентов с хроническим миелобластным лейкозом, мы говорили им, что у них крайне опасное заболевание, что оно смертельно, прогноз неблагоприятный, а средняя выживаемость от трех до шести лет. Основным методом лечения была аллогенная трансплантация… других способов не существовало… Сегодня же я говорю пациентам с ХМЛ, что у них безболезненная лейкемия, прогнозы крайне благоприятны и что они проживут весь отпущенный им срок жизни, если будут регулярно принимать таблетки гливек».
Как справедливо заметили руководители компании «Новартис», ХМЛ не представляет массовой опасности для общественного здоровья, но рак, как недуг, глубоко символичен. Судьбоносные идеи зарождаются на далеких окраинах онкологии, а затем рикошетируют в более распространенные формы заболевания. Из всех форм рака чаще всего родиной новой парадигмы становится лейкемия. Наша история началась с попыток лечить лейкемию в клинике Сиднея Фарбера в 1948 году, а теперь снова вернулась к этой болезни. Если и впрямь, как напоминал Вармус, рак у нас в крови, то весьма уместно, двигаясь все расширяющимися кругами, снова и снова возвращаться к раку крови. Успех лекарства Друкера оказал огромное впечатление на онкологию в целом. «В 1950-е годы, когда я был юнцом в Иллинойсе, — писал Брюс Чабнер в одном из медицинских журналов, — спортивный мир был потрясен рекордом Роберта Баннистера… взявшего 6 мая 1954 года четырехминутный барьер в забегах на милю. Он улучшил мировой рекорд лишь на несколько секунд, однако изменил весь образ бега как спортивной дисциплины. В 1950–1960-е годы новые рекорды сыпались один за другим, точно спелые яблоки. Случится ли то же самое на ниве лечения рака? » Чабнер удачно выбрал сравнение. Баннистерова миля остается пробным камнем в истории легкой атлетики не потому, что Баннистер установил рекорд, который никому не удается побить, — на сегодняшний день его рекорд улучшен на пятнадцать секунд. Много лет четыре минуты казались внутренним, природным физиологическим пределом в беге на эту дистанцию. Казалось, мышцы не способны двигаться быстрее, легкие не могут дышать глубже. Баннистер доказал, что это миф, нет никаких внутренних физиологических пределов. Он преодолел не предел, а саму идею о пределах. Так же произошло и с гливеком. «Препарат доказывает принцип, оправдывает подход, — продолжал Чабнер, — демонстрирует принципиальную возможность высокоспецифичной и нетоксичной терапии». Гливек распахнул новую дверь в лечении рака. Сознательный синтез молекулы, способной убивать раковые клетки, — лекарства, предназначенного специфически блокировать действие онкогена, — оправдывал мечты Эрлиха о «специфичном сродстве». Целевая молекулярная терапия рака стала возможной, и единственное, что требовалось теперь, — это изучение базовой биологии раковых клеток. И последнее: я сказал, что ХМЛ — редкое заболевание, и еще не так давно это было правдой. Частота заболеваемости ХМЛ не изменилась: каждый год этот диагноз получают всего лишь несколько тысяч человек. Но распространенность ХМЛ — общее количество больных этой болезнью — резко изменилась с появлением гливека. В 2009 году выживаемость больных, принимающих гливек, составила в среднем тридцать лет после первоначальной постановки диагноза. Основываясь на этих цифрах, Хагоп Кантарян предсказал, что в следующее десятилетие в Америке будет жить четверть миллиона человек, больных ХМЛ, и все из них — на целевой терапии. Лекарство Друкера изменило национальный портрет рака, превратив некогда редкую болезнь в сравнительно распространенную. Друкер шутит, что добился цели, противоположной той, какую ставит перед собой онкология: его лекарство увеличило число людей, больных раком. Учитывая, что в социальную сеть человека входит в среднем около тысячи знакомых, то в принципе каждый из нас знает хотя бы одного больного лейкемией, которому сохранило жизнь целевое антираковое лекарство.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|