Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Разработка нефтяных месторождений при естественных режимах




5.1. ПРОЯВЛЕНИЕ УПРУГОГО РЕЖИМА

Разработка нефтяного месторождения при упругом режиме — это осуществление процесса извлечения нефти из недр в условиях, когда пластовое давление превышает давление насыщения, поля давлений и скоростей продвижения нефти и воды, насыщающих пласт, а также воды в его законтурной области неустановившиеся, изменяющиеся во времени в каждой точке пласта.

Упругий режим проявляется во всех случаях, когда изменяются дебиты добывающих нефть скважин или расходы воды, закачиваемой в нагнетательные скважины. Однако даже при установившемся режиме в пределах нефтеносной части пласта, например в процессе разработки месторождения, с использованием законтурного заводнения, в законтурной области будет наблюдаться перераспределение давления за счет упругого режима. Упругий режим с точки зрения физики — расходование или пополнение упругой энергии пласта, происходящее благодаря сжимаемости пород и насыщающих их жидкостей. При пуске, например, добывающей скважины давление в ней уменьшается по сравнению с пластовым. По мере отбора нефти запас упругой энергии в призабойной зоне уменьшается, т.е. нефть и породы оказываются менее сжатыми, чем раньше. Продолжающийся отбор нефти из пласта приводит к дальнейшему расходованию запаса упругой энергии и, следовательно, к расширению воронки депрессии вокруг скважины.

С уменьшением пластового давления до значения, меньшего, чем давление насыщения, из нефти начнет выделяться растворенный в ней газ, и режим пласта изменится — упругий режим сменится режимом растворенного газа или газонапорным.

Теорию упругого режима используют главным образом для решения следующих задач по разработке нефтяных месторождений.

1. При определении давления на забое скважины в результате ее пуска, остановки или изменения режима эксплуатации, а также при интерпретации результатов исследования скважин с целью определения параметров пласта.

На основе теории упругого режима создан наиболее известный в практике разработки нефтяных месторождений метод определения параметров пласта по кривым восстановления давления в остановленных скважинах (метод КВД). Технологически этот метод состоит в том, что исследуемую скважину вначале эксплуатируют с постоянным дебитом до достижения притока в скважину, близкого к установившемуся. Затем на забой (рисунок 23) опускают глубинный манометр, способный регистрировать изменение давления на забое скважины во времени . В некоторый момент времени, условно принимаемый за начальный ( ), закрывают исследуемую скважину. Давление на ее забое , начинает расти, восстанавливаясь до условного пластового (контурного), за которое принимают давление в пласте на половинном расстоянии между скважинами. В каждой исследуемой скважине давление может восстанавливаться особым образом. Сняв кривую восстановления забойного давления определяют на основе соответствующего решения задачи теории упругого режима проницаемость и пьезопроводность пласта. На рисунке 24 показана типичная фактическая кривая восстановления забойного давления в виде зависимости .

 

Рисунок 23 — Схема скважины при исследовании методом восстановления давления

1 — ролик подъемного устройства; 2 — канат (кабель); 3 — задвижка; 4 — скважина; 5 —глубинный манометр; 6 — пласт

 

Рисунок 24 — Кривая восстановления забойного давления в скважине

1 — точка фактических измерений забойного давления глубинным манометром

 

2. При расчетах перераспределения давления в пласте и соответственно изменения давления на забоях одних скважин, в результате пуска-остановки или изменения режима работы других скважин, разрабатывающих пласт.

Эти расчеты используют, в частности, для интерпретации данных «гидропрослушивания» пласта, осуществляющегося следующим образом. В момент времени производят, например, пуск в работу скважины А с дебитом (рисунок 23). На забое остановленной скважины В, в которую предварительно опускают глубинный манометр, регистрируется изменение забойного давления .

На рисунке 25 слева показаны «волны» понижения пластового давления , а справа — типичная фактическая кривая понижения давления в прослушиваемой скважине. По скорости и амплитуде понижения давления можно оценить среднюю проницаемость и пьезопроводность пласта на участке между скважинами А и В. Если же в скважине В не происходит изменения давления, т.е. она не прослушивается из скважины А, то считают, что между этими скважинами существует непроницаемый барьер (тектонический сдвиг, участок залегания непроницаемых пород и т.д.). Установление гидродинамических связей между скважинами имеет важное значение для определения охвата пласта воздействием и регулирования его разработки.

 

Рисунок 25 — Кривая понижения давления в прослушиваемой скважине

 

3. При расчетах изменения давления на начальном контуре нефтеносности месторождения или средневзвешенного по площади нефтеносности пластового давления при заданном во времени поступлении воды в нефтеносную часть из законтурной области месторождения.

Если нефтяное месторождение разрабатывается без воздействия на пласт и это месторождение окружено обширной водоносной областью с достаточно хорошей проницаемостью пород в этой области, то отбор нефти из месторождения и понижение пластового давления в нем вызовут интенсивный приток воды из законтурной в нефтеносную область разрабатываемого пласта.

На рисунке 26 показана схема нефтяного месторождения с равномерным расположением скважин, разрабатываемого на естественном режиме. В процессе отбора из пласта вначале нефти, а затем нефти с водой пластовое давление изменится по сравнению с начальным , которое сохранится в водоносной части на некотором, постоянно увеличивающемся, удалении от контура нефтеносности.

 

Рисунок 26 — Схема нефтяного месторождения и изменения пластового давления

1 — внешний контур нефтеносности; 2 — внутренний контур нефтеносности; 3 — добывающие скважины; 4 — пьезометрические скважины; 5 — изобары; 6 — условный контур нефтеносности; 7 — эпюра пластового давления вдоль разреза месторождения по линии АА1

 

В нижней части этого рисунка показана эпюра пластового давления вдоль разреза пласта по линии АА'. Как видно из этой эпюры, вблизи внешнего 1 и внутреннего 2 контуров нефтеносности пластовое давление резко снижается в результате роста фильтрационного сопротивления при совместной фильтрации нефти и воды, затем плавно изменяется по площади. Вблизи добывающих скважин 3, естественно, возникают воронки депрессии и забойное давление в скважинах составляет . Построив изобары 5 (линии равного пластового давления), можно определить средневзвешенное пластовое давление (см. рисунок 26), которое в процессе разработки месторождения на естественном режиме будет уменьшаться со временем. Если вблизи контура нефтеносности имеются наблюдательные (пьезометрические) скважины 4, то замеряют изменение давления на контуре в этих скважинах, при этом считая, что пьезометрические скважины находятся на некотором условном контуре нефтеносности 6. Таким образом, можно рассматривать изменение во времени средневзвешенного пластового давления или контурного . По отбору жидкости из нефтяной залежи с корректировкой на изменение упругого запаса можно определить изменение во времени отбора воды из законтурной части пласта. Далее можно приближенно полагать, что темп отбора воды из законтурной области пласта равен темпу отбора жидкости из нефтяной залежи . Пусть, например, на месторождении имеются пьезометрические скважины и по глубинным замерам определено изменение в них давления за некоторый начальный период разработки месторождения .

Фактическое изменение показано на рисунке 27, а на рисунке 28 — изменение за начальный период и за весь период разработки месторождения. Естественно, в начальный период разработки отбор жидкости из месторождений в связи с его разбуриванием и вводом в эксплуатацию скважин возрастает. За этот период и определено фактическое изменение давления на контуре . При отбор жидкости из месторождения изменяется иначе, чем в начальный период: он сначала стабилизируется, а в поздний период разработки снижается.

 

Рисунок 27 — Зависимость от времени Рисунок 28 — Зависимость от времени
1 — фактическое (замеренное в скважинах) контурное давление за период ; 2 — возможные варианты изменения при различных

 

Поэтому просто экстраполировать изменение по имеющейся зависимости за начальный период разработки нельзя, так как темп отбора жидкости изменится при . Изменение прогнозируют на основе решения соответствующих задач теории упругого режима.

4. При расчетах восстановления давления на контуре нефтеносного пласта в случае перехода на разработку месторождения с применением заводнения или при расчетах утечки воды в законтурную область пласта, если задано давление на контуре нефтеносности.

Если нефтяное месторождение в некоторый момент времени начинает разрабатываться с применением законтурного заводнения, то приток воды в нефтенасыщенную часть из законтурной области будет уменьшаться, поскольку вытеснение нефти из пласта осуществляется закачиваемой в пласт водой. С повышением давления на линии нагнетания приток воды в нефтенасыщенную часть месторождения из законтурной области сначала прекратится, а затем закачиваемая в пласт вода начнет утекать в законтурную область.

При расчетах утечки воды в законтурную область может потребоваться решение задачи упругого режима, когда на контуре нагнетательных скважин (рисунке 29) задано давление , а требуется определить расход воды, утекающей в законтурную область пласта.

 

Рисунок 29 —Схема разработки нефтяного месторождения с применением законтурного заводнения

1 — внешний контур нефтеносности; 2 — внутренний контур нефтеносности; 3 — добывающие скважины; 4 — нагнетательные скважины; 5 — контур нагнетательных скважин

 

5. При определении времени, в течение которого в каком-либо элементе системы разработки с воздействием на пласт с помощью заводнения наступит установившийся режим.

Допустим, что месторождение введено в эксплуатацию с применением внутриконтурного заводнения при однорядной системе разработки. Пусть в какой-то момент времени были остановлены первый и второй ряды нагнетательных скважин, а в момент времени их вновь включают в эксплуатацию.

Процессы вытеснения нефти водой происходят обычно медленнее, чем процесс перераспределения давления при упругом режиме. Поэтому можно считать, что спустя некоторое время после пуска нагнетательных рядов в пласте между добывающим и нагнетательным рядами наступит период медленно меняющегося распределения давления (при постоянстве расходов закачиваемой в пласт воды и отбираемой из пласта жидкости), т. е. упругий режим закончится и создается почти установившийся режим. Время существования упругого режима также определяют на основе теории упругого режима.

 

5.2. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ УПРУГОГО РЕЖИМА

Для того чтобы осуществлять расчеты процессов разработки нефтяных месторождений при упругом режиме, необходимо прежде всего получить дифференциальное уравнение этого режима, при выводе которого исходят из уравнения неразрывности массы фильтрующегося вещества, которое представим в более развернутом, чем в разделе 4, виде:

. (5.1)

Пористость пласта , как было отмечено в предыдущей главе, нелинейно зависит от среднего нормального напряжения . Однако в диапазоне изменения от доли единицы до 10 МПа зависимость пористости от среднего нормального напряжения можно считать линейной, а именно

. (5.2)

Здесь — сжимаемость пористой среды пласта; — начальное среднее нормальное напряжение.

Используем связь между горным давлением по вертикали ( , -удельный вес вышележащих горных пород, Н/м 3, — глубина залегания пласта), средним нормальным напряжением и внутрипоровым (пластовым) давлением , определяемую формулой:

. (5.3)

Из формулы (5.3) следует, что при :

. (5.4)

Учитывая (5.2) и (5.4), получим

. (5.5)

Плотность фильтрующейся в пласте жидкости в первом приближении линейно зависит от давления , т.е.

, (5.6)

где — сжимаемость жидкости; — плотность жидкости при начальном давлении .

Из (5.6) имеем

. (5.7)

Используя закон Дарси и считая проницаемость и вязкость жидкости не зависящими от координаты, имеем

. (5.8)

Подставим (5.5), (5.7) и (5.8) в (5.1). В результате получим следующее выражение:

. (5.9)

Учитывая незначительную сжимаемость жидкости, в формуле (5.9) можно положить . Тогда окончательно получим дифференциальное уравнение упругого режима в следующем виде:

; (5.10)

;

Здесь и — соответственно пьезопроводность и упругоемкость пласта (по предложению В.Н. Щелкачева).

Решение уравнения упругого режима позволяет рассчитывать изменение давления во времени в каждой точке пласта. Однако при грубых оценках возможностей разработки нефтяных месторождений при упругом режиме используют понятие об упругом запасе месторождения, его части или законтурной области. Упругий запас — это возможное изменение порового объема пласта в целом при изменении пластового давления на заданное, предельное, исходя из условий разработки и эксплуатации месторождения, значение. Упругий запас обычно определяют по формуле линейного закона сжимаемости пласта

; , (5.11)

где — изменение порового объема, т. е. непосредственно упругий запас пласта объемом ; , и — абсолютные величины.

 

5.3. РАЗРАБОТКА МЕСТОРОЖДЕНИЙ ПРИ РЕЖИМАХ РАСТВОРЕННОГО ГАЗА И ГАЗОНАПОРНОМ

При уменьшении давления ниже давления насыщения в разрабатываемом пласте развивается режим растворенного газа. Когда насыщенность порового пространства свободным газом, выделившимся из нефти, еще мала, газ остается в нефти в виде пузырьков. С увеличением же газонасыщенности в связи с прогрессирующим снижением пластового давления пузырьки газа всплывают под действием сил гравитации, образуя в повышенной части пласта газовое скопление — газовую шапку, если ее образованию не мешает слоистая или иная неоднородность.

В отличие от первичных газовых шапок нефтегазовых месторождений, существовавших в них до начала разработки, газовая шапка, образовавшаяся в процессе разработки, называется вторичной.

Выделяющийся из нефти газ, расширяясь со снижением давления, способствует вытеснению нефти из пласта. Режим пласта, при котором происходит такое вытеснение нефти, называют режимом растворенного газа. Если произошло отделение газа от нефти в пласте в целом и образовалась газовая шапка, режим растворенного газа сменяется газонапорным.

Опыт разработки нефтяных месторождений и теория фильтрации газонефтяной смеси с учетом сил гравитации показывают, что почти всегда режим растворенного газа довольно быстро переходит в газонапорный. Часто режим растворенного газа может существовать в нефтяном пласте в сочетании с упругим режимом в его законтурной области или даже в сочетании с водонапорным, если пластовое давление близко к давлению насыщения. Тогда вблизи добывающих скважин возникает режим растворенного газа, а вблизи нагнетательных — водонапорный. Такие режимы пластов называют смешанными.

Рассмотрим разработку пласта при смешанном режиме — упругом в его законтурной области и растворенного газа — в нефтенасыщенной части пласта. Пусть разрабатываемый пласт имеет форму, близкую к кругу (рисунок 30). Его законтурная водоносная область достаточно хорошо проницаемая и простирается очень далеко («до бесконечности»). Она разрабатывается при упругом режиме. Давление на контуре нефтенасыщенной части пласта можно определить по методике, изложенной в предыдущем разделе.

 

Рисунок 30 — Схема нефтяного месторождения круговой формы в плане, разрабатываемого при смешанном режиме

1 — условный контур нефтеносности; 2 — аппроксимация условного контура нефтеносности окружностью радиусом R; 3 — добывающие скважины

 

Пусть нефтяной пласт разрабатывается с использованием равномерной сетки добывающих скважин. Радиус контура питания каждой добывающей скважины можно считать равным половине расстояния между скважинами. Если , пластовое давление ( — давление насыщения). При приближенном расчете дебитов добывающих скважин можно принять , где — некоторый постоянный коэффициент.

Итак, при смешанном режиме давление на контурах добывающих скважин определяют с учетом контурного в нефтяной залежи, которое, в свою очередь, вычисляют на основе теории упругого режима, если задано изменение во времени текущего поступления воды из законтурной области в нефтенасыщенную часть пласта .

Если близко к давлению насыщения, но ниже его и, следовательно, насыщенность пласта свободным газом незначительна, то можно приближенно считать текущий объем поступающей воды в нефтенасыщенную часть пласта из законтурной области равным текущей добыче пластовой нефти, т.е. .

Если известна текущая добыча пластовой нефти из нефтяной залежи в целом, то необходимо лишь вычислить дебиты скважин с тем, чтобы определить, сколько скважин необходимо пробурить на залежи для обеспечения указанной текущей добычи нефти.

Определим дебиты скважин при режиме растворенного газа. Перераспределение давления вблизи скважин происходит значительно быстрее, чем изменение контурного в нефтяной залежи и соответственно давления на контуре питания скважин . Поэтому распределение давления при можно считать установившимся в каждый момент времени, т.е. квазистационарным.

На характер течения газированной нефти в пористой среде влияет растворимость в ней газа. Для количественного определения растворимости газа в нефти в теории разработки нефтяных месторождений обычно используют закон Генри. Однако в зависимости от свойств конкретных нефтей и газов представляют этот закон различным образом. Для расчетов разработки пластов при режиме растворенного газа используют формулу закона Генри обычно в следующем виде:

, (5.12)

где — объем газа, растворенного в нефти, приведенный к стандартным (атмосферным) условиям; — коэффициент растворимости; — объем нефти в пластовых условиях вместе с растворенным в ней газом; — абсолютное давление.

Для реального газа необходимо учитывать коэффициент его сверхсжимаемости . При изотермическом процессе уравнение состояния реального газа можно представить в виде:

, (5.13)

где , , , соответственно плотность и коэффициент сверхсжимаемости газа при пластовом и атмосферном давлениях.

Для массовой скорости фильтрации свободного газа , на основании обобщенного закона Дарси имеем выражение

, . (5.14)

Для массовой скорости фильтрации растворенного в нефти газа имеем

. (5.15)

И, наконец, скорость фильтрации нефти выражается следующим образом:

. (5.16)

Найдем отношение суммарного расхода фильтрующегося в пласте газа (свободного и растворенного в нефти), приведенного к атмосферным условиям, к объемной скорости фильтрации нефти, называемое пластовым газовым фактором Г. При установившейся фильтрации значение Г остается постоянным в любом цилиндрическом сечении пласта при ( — радиус скважины).

Из (5.14), (5.15) и (5.16) имеем

. (5.17)

Из (5.17) следует, что есть связь между давлением и насыщенностью пласта нефтью (жидкой углеводородной фазой) . Таким образом, при установившемся движении газированной жидкости

. (5.18)

В то же время, согласно обобщенному закону Дарси, относительная проницаемость для нефти

(5.19)

На основе (5.18) и (5.19) заключаем, что должна существовать зависимость относительной проницаемости для нефти от давления

. (5.20)

Теперь можно получить аналог формулы Дюпюи для притока газированной нефти к скважине с дебитом . Имеем

. (5.21)

Для интегрирования (5.21) необходимо ввести функцию Христиановича Н, определяемую как

; . (5.22)

Интегрируя (5.21) с учетом (5.22), получаем формулу для определения дебита нефти

; , (5.23)

где , — значения функции Христиановича соответственно на контуре питания ( ) и на скважине ( ). Имея зависимости относительных проницаемостей для нефти и газа конкретного пласта, данные о вязкости нефти и растворимости газа в нефти, можно построить зависимость , а затем по формуле (5.23) определить дебит скважины, задаваясь значением забойного давления в скважине. Зная общую текущую добычу из нефтяной залежи на основе решения задачи упругого режима в законтурной области пласта и дебит одной скважины, определяем число скважин, которые необходимо пробурить для разработки пласта при смешанном режиме.

В приведенных расчетах предполагалось, что законтурная область пласта обладает достаточно высокими фильтрационными свойствами. Но даже в случае такого предположения давление на круговом контуре пласта падает весьма интенсивно. Если же проницаемость в законтурной области в несколько раз ниже, чем в самом пласте, или пласт выклинивается за контуром нефтеносности, что часто бывает, то приток воды в нефтенасыщенную часть пласта становится незначительным и можно считать, что нефтяная залежь замкнутая, а законтурная вода неактивная.

Будем считать, что в рассматриваемом случае выделение пузырьков газа из нефти затруднено из-за слоистости пласта. В этом случае в пласте разовьется в чистом виде режим растворенного газа.

Для упрощения расчета разработки пласта при этом режиме можно считать, что течение газа к каждой скважине, ограниченной контуром радиуса , квазистационарное — установившееся в каждой линии тока, но изменяющееся во времени.

Рассматривая массовый приток нефти к каждой скважине, будем в кривых относительных проницаемостей учитывать насыщенность жидкой углеводородной фазой в каждой точке пласта , а при рассмотрении разработки элемента пласта в целом (при ) введем некоторую среднюю насыщенность пласта жидкой углеводородной фазой, равную . Пусть эта насыщенность существует в некотором сечении пласта, близком к контуру при давлении в этом сечении, равном .

Тогда для массового дебита нефти , притекающей к скважине, имеем выражение

. (5.24)

Массовый дебит газа

. (5.25)

Для газового фактора в элементе пласта в целом получаем выражения

;

; . (5.26)

Имеем следующие выражения для масс нефти и газа в пласте радиусом :

; ;

, (5.27)

где и — объемы соответственно нефти и газа.

Из (5.27) получаем

;

. (5.28)

На основе уравнения материального баланса получим следующее выражение для газового фактора:

. (5.29)

Учитывая, что

, , , (5.30)

имеем

. (5.31)

Процесс разработки пласта считается изотермическим. Так как не учитывается сверхсжимаемость газа, из (5.13)

. (5.32)

Тогда из (5.31) и (5.32), устремляя и к нулю, получим

. (5.33)

Дифференциальное уравнение (5.33) совпадает с известным уравнением К.А. Царевича, выражающим связь между насыщенностью жидкости и давлением на контуре скважины, эксплуатируемой в условиях режима растворенного газа.

Решая уравнение (5.33), получим зависимость средней насыщенности жидкостью от среднего давления и затем — все остальные показатели разработки. При этом, поскольку в случае режима растворенного газа плотность нефти в пластовых условиях в процессе разработки значительно увеличивается вследствие выделения из нефти газа, во время подсчета нефтеотдачи следует учитывать изменение плотности нефти.

Пусть — масса дегазированной нефти, а — масса газа растворенного в нефти. Объем нефти в пластовых условиях равен . Тогда

; , (5.34)

где — кажущаяся плотность растворенного в нефти газа;

— плотность дегазированной нефти.

Тогда плотность нефти в пластовых условиях

. (5.35)

Начальные запасы нефти в области пласта, охваченной разработкой:

, (5.36)

где — плотность нефти при давлении насыщения; — пористость; — насыщенность связанной водой; — объем пласта. Остаточные запасы нефти в пласте, охваченном разработкой:

. (5.37)

Из (5.36) и (5.37) для текущего коэффициента вытеснения получим выражение

. (5.38)

Умножив на коэффициент охвата разработкой, получим текущую нефтеотдачу в зоне, приходящейся на одну скважину. Зная число скважин, можно определить текущую нефтеотдачу по месторождению в целом в каждый момент времени, а также среднее пластовое давление . Рассмотрим характер разработки пласта при образовании газовой шапки.

 

Рисунок 31 — Схема нефтяного месторождения с вторичной газовой шапкой

1 — нефть; 2 — газовая шапка; 3 — законтурная вода

 

В процессе разработки такого пласта газ, выделяясь из нефти, всплывает под действием сил гравитации в газовую шапку (рисунок 31). Таким образом, нефтяной пласт разрабатывается при газонапорном режиме. Месторождение разбурено равномерной сеткой добывающих скважин. Вблизи каждой из них в процессе эксплуатации образуются воронки депрессии. Однако на условном контуре питания скважин при давление равно . Введем понятие среднего пластового давления , которое будем считать близким к давлению на контуре питания , поскольку воронки депрессии занимают незначительную долю в распределении давления в пласте в целом. Объем пласта охваченный процессом разработки:

, (5.39)

где — общий объем пласта. Будем считать, что разработка пласта началась с того момента времени, когда среднее пластовое давление было равно давлению насыщения .

Приток нефти и газа к отдельным скважинам можно вычислять по формуле Дюпюи или по формуле безнапорной радиальной фильтрации. Изменение же среднего пластового давления определим, используя соотношения, вытекающие из уравнения материального баланса веществ в пласте в целом.

Для этого введем следующие обозначения: — полная масса газа в пласте, включая свободный газ и газ, растворенный в нефти; — полная масса дегазированной нефти в пласте; — масса газа, растворенного в нефти; — полная масса свободного газа.

Имеем следующие соотношения материального баланса:

; , (5.40)

где , так же как и — полная масса дегазированной нефти. Используем формулу закона Генри в том же виде, что и при рассмотрении фильтрации газированной нефти, а именно

. (5.41)

Для получения замкнутой системы соотношений материального баланса применим соотношение для суммы объемов компонентов в пласте в виде

, (5.42)

где и — плотность соответственно газа в пласте и дегазированной нефти; — кажущаяся плотность растворенного в нефти газа. К соотношениям (5.40) - (5.42) необходимо добавить уравнение состояния реального газа (5.13), которое в рассматриваемом случае принимает вид

. (5.43)

В итоге имеем полную систему соотношений для определения . Будем считать процесс разработки пласта при газонапорном режиме изотермическим. Для некоторого упрощения задачи усредним также отношение коэффициентов сверхсжимаемости газа , положив .

Будем считать, что и известны в каждый момент времени . Эти величины определяют следующим образом:

; ,

где и — начальные массы соответственно газа и дегазированной нефти в пласте; — текущая объемная добыча газа, замеренная при атмосферных условиях; — текущая добыча дегазированной нефти.

Подставляя (5.40), (5.41) и (5.43) в (5.42), получим для определения следующее квадратное уравнение:

; (5.44)

Решение этого уравнения имеет два корня, а именно

. (5.45)

Для того чтобы узнать, какой из корней справедлив, проведем исследования квадратного уравнения (5.45). Обозначим

(5.46)

Поскольку — величина всегда положительная, то ветви параболы (5.46) направлены в сторону возрастания . Величины и также всегда положительные. Поэтому оба корня уравнения (5.44) положительные. В самом деле, подкоренное выражение (5.45) всегда меньше и в любом из случаев положительное. Чтобы определить, какой же из корней (меньший или больший) справедлив, продифференцируем (5.46). Имеем

. (5.47)

Если , то производная — отрицательна и функция убывает. В этом случае справедлив меньший корень . При соответственно справедлив больший корень . Таким образом, вообще говоря, необходимо в каждом конкретном случае определять численное значение величины с тем, чтобы найти справедливый корень уравнения (5.44).

Масса свободного газа в пласте

. (5.48)

Объем газовой шапки в каждый момент времени разработки пласта

. (5.49)

Из рассмотрения основных закономерностей разработки нефтяных месторождений при естественных режимах, изложенных в предыдущих разделах, а также соответствующих примеров следует, что такая разработка в большинстве случаев не может быть эффективной. Так, разработка нефтяных месторождений при упругом режиме во многих случаях приводит к значительному снижению пластового давления и, как следствие, к уменьшению перепадов давления и дебитов скважин. Поддержание высоких темпов разработки в условиях падения пластового давления требует бурения слишком большого числа скважин. Только в особых случаях разработки небольших месторождений при очень «активной» законтурной воде запасы месторождений могут быть выработаны при допустимом снижении пластового давления.

Поделиться:





Читайте также:

N инженерно-экологическое обеспечение производства, разработка методов инженерно-экологической профилактики, восстановления и реконструкции ландшафтов.
RAND RESEARCH AND DEVELOPMENT CORPORATION (“Корпорация Рэнд” — “Корпорация по научно-исследовательским и опытно-конструкторским разработкам”)
Анализ бухгалтерского баланса. Разработка аналитического баланса. Вертикальный горизонтальный анализ. Анализ активов организации и источников их формирования.
Банкротство субъектов естественных монополий
Гимназии разделялись на классические и реальные, где вместо древних языков увеличили объем преподавания математики, естественных наук.
Главные факторы и условия образования экзогенных месторождений
Горно-геологические условия бурения нефтяных и газовых скважин
Группы месторождений по степени их изученности
Запасы твердых полезных ископаемых разведанных в Смоленской области месторождений (по данным Смоленскгеоуправления, 1998 г.)
Использование естественных протяженных заземлителей






Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...