Свойства растворов неэлектролитов. Давление пара растворов
Необходимо вспомнить закон Рауля применительно к разбавленным растворам. Мы знаем, что давление насыщенного пара каждой жидкости есть величина постоянная для данной температуры. При растворении в жидкости какого-либо нелетучего вещества давление пара жидкости понижается. Таким образом, давление пара раствора всегда ниже давления пара чистого растворителя при той же температуре. Разность между числовыми значениями давления пара чистого растворителя и давления пара раствора называется обычно понижением давления пара растворителя над раствором. Это можно выразить формулой В 1887 году французский физик Рауль на основании многочисленных опытов с растворами различных твёрдых веществ и нелетучих жидкостей установил следующий закон: относительное понижение давления насыщенного пара над раствором по сравнению с чистым растворителем прямо пропорционально мольной доле растворённого вещества. Зависимость между понижением давления пара и количеством растворённого вещества может быть выражена в математической форме. Обозначим давление чистого растворителя через pо, понижение давления пара через , число молей растворённого вещества через n1 и число молей растворителя через n2. Тогда закон Рауля для разбавленных растворов выразится уравнением Измерением понижение давления пара раствора можно пользоваться для определения молекулярной массы растворённых веществ. Однако на практике обычно применяется другой, более удобный метод, основанный на измерении понижения температуры замерзания или повышения температуры кипения раствора. Все чистые вещества характеризуются строго определённой температурой замерзания. Так, чистая вода при нормальном атмосферном давлении замерзает при 0 ºС, бензол при +5,5 ºС. Эти температуры сохраняются неизменными до тех пор, пока вся жидкость не замёрзнет или не превратится в пар.
14 Свойства растворов неэлектролитов Замерзание и кипение растворов Осмотическое давление, давление пара, изменение температуры замерзания и кипения подчиняются законам Вант-Гоффа и Рауля. Осмотическое давление раствора неэлектролита определяют согласно закону Вант-Гоффа: , где n – количество растворенного вещества, моль; V – объем раствора, м3; R – газовая постоянная, равная 8,31 Дж/(моль·К); Т – температура, К. Заменив n выражением m/M, где m – масса растворенного вещества, г; M – его молярная масса, г/моль, получим , или, исходя из определения молярной концентрации, получим: . Понижение температуры замерзания и повышение температуры кипения растворов по сравнению с температурой замерзания и температурой кипения чистого растворителя определяют по II закону Рауля: Dtзам. = Кк×Сm; Dtкип. =Кэ×Cm, где Dtзам. и Dtкип. – соответственно понижение температуры замерзания и повышение температуры кипения раствора находят по формуле Dtзам = Тзам. р-ля – Тзам. р-ра ; Dtкип= Ткип. р-ра – Т кип. р-ля; Кк и Кэ – соответственно криоскопическая и эбулиоскопическая константы растворителя; Сm – моляльная концентрация раствора (моль/кг) может быть найдена по формуле , где m1 – масса растворенного вещества, г; М – его молярная масса, г/моль; m2 – масса растворителя, г. Любая жидкость закипает, когда давление ее пара становится равным атмосферному давлению. Так как, согласно закону Рауля, давление пара над раствором ниже давления пера над чистым растворителем, то для того, чтобы раствор закипел, его нужно нагреть до более высокой температуры, чем растворитель. Замерзает раствор тогда, когда давление насыщенного пара его становится равным давлению насыщенного пара твердого растворителя (льда).
Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, раствор кипит при более высокой температуре, а замерзает при более низкой температуре, чем чистый растворитель. Повышение температуры кипения (ΔТкип) и понижение температуры замерзания (∆Тзам) раствора прямо пропорционально моляльной концентрации растворенного вещества (следствие закона Рауля): ∆Тзам = КТ ∙ сm(B); ∆Ткип = ЭТ ∙ cm(B), где ∆Тзам – понижение температуры замерзания; ∆Ткип – повышение температуры кипения; КТ - криоскопическая константа; ЭТ – эбулиоскопическая константа; cm(B) – моляльная концентрация раствора. Заменив в уравнениях cm(B) его выражением по формуле для моляльной концентрации получим: ∆Тзам = ; ∆Ткип = 15 Гальванические элементы состоят из двух электродов, имеющих различный электродный потенциал, электролита, который дает возможность перемещаться ионам от одного электрода к другому, и металлического проводника электронов в результате потока которых может быть получена электрическая энергия постоянного тока. В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или Eθ, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой, как гальваническая ячейка, всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) и восстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту. 16 Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.
17 Электролиз с растворимым анодом. Использование электролиза в технике.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|