Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Оптоэлектронные устройства памяти

Оптоэлектроника основана на применении как электрических, так и оптических методов обработки информации и рассматривает методы и устройства преобразования электрических сигналов в световые и обратно, исследует процессы получения, передачи, обработки и хранения информации, переносимой светом.

Существенная особенность оптоэлектронных устройств состоит в том, что элементы в них оптически связаны, а электрически - изолированы.

В цепях с обычными приборами вакуумной и полупроводниковой электроники невозможна эффективная развязка между входом и выходом, что связано с наличием у электрона электрического заряда. Оптическая же связь, осуществляемая с помощью фотонов, может быть реализована между участками схемы со значительно различающимися потенциалами; в оптоэлектронных устройствах осуществляется эффективная развязка между входом и выходом. Кроме того, оптоэлектронным устройствам присущи и другие достоинства: возможность пространственной модуляции световых пучков и значительного ветвления и пересечения световых пучков в отсутствие гальванической связи между каналами; большая функциональная нагрузка световых пучков, обусловленная большой вариабельностью их параметров (амплитуды, направления, частоты, фазы, поляризации).

Оптоэлектронные приборы. В состав оптоэлектронных устройств входит несколько видов приборов, которые связаны между собой и обеспечивают хранение и выдачу информации в зависимости от потребностей.

Основным структурным элементом оптоэлектронных устройств является оптрон - прибор, состоящий из источника и приемника света, связанных оптически. Поскольку схемотехнические возможности оптрона определяются главным образом характеристиками фотоприемника, этот элемент и дает название оптрона в целом. К важнейшим разновидностям элементарных оптронов относятся: транзисторные, диодные, резисторные и тиристорные (рис. 7).

Функциональные возможности оптрона могут быть существенно расширены при введении обратных связей (электрических или оптических). Наиболее известен оптрон, в котором приемник и излучатель соединены электрически, а также имеется оптическая положительная обратная связь. Такое устройство, получившее название регенеративного оптрона, пригодно для использования в качестве переключателя, усилителя, генератора как электрических, так и световых сигналов.

Рис. 7. Элементарные оптроны:

а — резисторный: б—диодный; в—транзисторный; г — тирис-торный; д — резисторный с электролюминесцентным конденсатором

Для осуществления в оптоэлектронных устройствах широкой и гибкой системы оптических связей часто применяют волоконную оптику.

Оптические волокна представляют собой эффективные световоды, обеспечивающие передачу излучения по заданному пути; их можно группировать в пучки любой формы и изгибать под любыми углами.

Волокнистые световоды исключают необходимость в фокусирующих и отклоняющих системах. Поэтому оптоэлектронные ЗУ могут иметь многоплатную конструкцию, причем каждая плата имеет свои источники света и свои фотоприемники, число которых равно количеству битов хранимой информации.

Оптоэлектроника предъявляет к источникам света такие требования, как миниатюрность, малая потребляемая мощность, высокие эффективность и надежность, большой срок службы, технологичность. Они должны обладать высоким быстродействием, допускать возможность изготовления в виде интегральных устройств. Планарная технология интегральных схем позволяет создавать миниатюрные устройства с расщеплением излучения, сформированные вместе с электронными схемами управления. Ячейки матриц излучателей и фотоприемников могут обладать памятью.

Наиболее распространенными элементами матриц некогерентных источников света являются инжекционные светодиоды, в которых испускание света определяется механизмом рекомбинации электронов и дырок. В качестве материалов для светодиодов используют арсенид и фосфид галлия, карбид кремния, твердые растворы арсенида галлия—алюминия и т.д.

Перспективными источниками света являются инжекционные лазеры, позволяющие получать высокую плотность энергии в узкой спектральной области при высоких КПД и быстродействии (десятки пикосекунд). Заметим, что быстродействие светодиодов ~0,5 мкс. Инжекционные лазеры можно изготовлять в виде матриц на одном базовом кристалле по той же технологии, что и интегральные микросхемы.

Для преобразования световых сигналов в электрические используют фотодиоды, фоторезисторы, фототранзисторы и другие приборы. Их можно использовать и для изготовления интегральных матриц, которые могут иметь координатную организацию, позволяющую выбирать любой, но только один, фотоприемник в определенный момент времени, могут быть организованы построчно (по словам), в несколько регистров или с самосканированием.

Матрицы фотоприемника кроме светочувствительных элементов содержат коммутирующие элементы, а в некоторых случаях и элементы памяти. Простейшая ячейка содержит фотодиод и последовательно включенную емкость. Запоминание информации в матрице фотодиодов реализуется в виде накопления зарядов на емкостях фотодиодов.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...