Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Проблемы и перспективы машинной памяти

(Заключение)

В настоящее время существует очень много всевозможных технических средств записи и хранения информации, причем их число уже настолько велико, что сказать о каждом не представляется возможным. ЗУ, удовлетворяющее современным требованиям, может быть реализовано при использовании различных физических эффектов. В рассмотренных примерах это были эффекты магнетизма, физики полупроводников, оптики.

Возможность использования электронных лучей для записи и считывания информации всегда привлекала внимание разработчиков ЗУ. Такие свойства электронных потоков, как относительная простота управления траекториями движения электронов (вследствие наличия у них заряда), малая длина волны де Бройля и возможность получения высокой плотности энергии, обусловливают перспективность их применения в ЗУ. Поэтому переход к использованию электронных лучей в накопителях при увеличении плотности записи информации представляется закономерным.

Принципы электронно-лучевой памяти. Электронно-лучевые накопители информации достаточно конкурентоспособны при условии хранения больших массивов информации более 107—109 бит. Для накопления больших массивов информации в электронно-лучевых ЗУ необходимо разрабатывать специальные электронно-оптические системы, совершенствовать методы адресации лучей и способы записи (считывания) информации.

Информация в электронно-лучевых ЗУ представляется в виде локальных изменений свойств поверхности информационного носителя. Наиболее распространены способы записи, основанные на изменении прозрачности носителя, его отражательной способности, геометрии поверхности, намагниченности и накопленного заряда. Рассмотрим их подробнее.

Запись изменением прозрачности или отражательной способности носителя информации. При этом способе записи на информационном носителе необходимо получить заданный точечный рисунок в соответствии с записанной информацией. Носитель информации - тонкая пленка или фольга - условно поделен на элементарные участки, каждый из которых используют для записи одного бита информации.

При записи информации прозрачностью элементарных участков можно управлять с помощью перфораций отверстий или изменением толщины носителя информации. Для считывания информации электронный луч в соответствии с кодом адреса устанавливают в заданную область носителя. Параметры луча изменяются в зависимости от записанной информации. При считывании 1 электроны проходят через отверстие в носителе и попадают на регистратор. Таким образом, сигнал, снимаемый с регистратора электронных потоков, соответствует считываемой информации. При этом ток электронного луча, попадающего на регистратор, достаточно мал и его необходимо усиливать.

Запись изменением геометрии поверхности носителя. В электронно-лучевой памяти широко применяют и термопластическую запись информации. Запись на термопластиках осуществляют методом деформации поверхности носителя. Под действием сил притяжения, вызванных электрическими зарядами в размягченном слое диэлектрика, на поверхности носителя образуется рельеф, который служит изображением записанной информации. Для стирания записи достаточно нагреть термопластик до температуры, большей температуры проявления. При этом рельеф сглаживается и поверхность его выравнивается.

Для записи информации на термопластическом диэлектрике служит электронная пушка, развертка которой осуществляется только вдоль строки. Носитель информации со слоем термопластика обычно выполняют в виде ленты, которая хранится в кассетах. После записи информации соответствующий участок ленты, прежде чем попасть в приемную кассету, проходит зону проявления, в которой с помощью высокочастотного нагревателя его доводят до размягчения. Для сохранения записанной информации ленту охлаждают и наматывают на приемную кассету. Считывание информации происходит при движении электронного луча по строке с записанной информацией в виде точечных лунок. Плотность записи 107—108 бит/см2; минимальное время запись—считывание составляет 0,01—0,02 с.

Запись с изменением намагниченности носителя. При этом способе запись информации осуществляют нагревом магнитного материала до точки Кюри. Для записи нуля электронный луч направляют на один из изолированных участков намагниченной пленки, вызывая нагрев его до температуры выше точки Кюри. При этом пленка на указанном участке (число которых должно быть, по крайней мере, не меньше количества бит запоминаемой информации) размагничивается. Таким образом, носитель с записанной информацией состоит из намагниченных и размагниченных участков пленки.

Носителем информации может служить и сплошная пленка из сплава марганец-висмут. Если при записи нагреть участок пленки выше точки Кюри, то после охлаждения вектор намагниченности в нем изменит свое направление. Плотность записи информации, допускаемая магнитной структурой пленки, составляет 109 бит/см2. Для считывания информации можно регистрировать вторичные электроны, испускаемые магнитным носителем. Для увеличения сигнала считывания на носитель целесообразно наносить тонкую пленку из материала с высоким коэффициентом вторичной электронной эмиссии.

Запись при помощи накопленного заряда. Известно, что взаимодействие ускоренных заряженных частиц с полупроводниками приводит не только к нагреву, но также к ионизации их атомов и к генерации электронно-дырочных пар. Такую память называют электронно-оптической. Если облучать полупроводник электронами с энергией 10—15 кэВ, то в мишени образуется несколько тысяч электронно-дырочных пар, представляющих собой динамические неоднородности. Если образовавшиеся пары быстро и эффективно разделить, то можно получить соответствующий импульс тока (при импульсном облучении) и соответствующие заряды на обкладках мишени.

ЗУ с использованием.металл—оксид—полупроводниковых мишеней с лучевой адресацией (МОПЛА-трубки памяти) позволяет хранить информацию в течение некоторого отрезка времени. Срок хранения при отключенном питании превышает один месяц при не менее чем двадцатикратном считывании. Изменение сигнала при изменении температуры от -40 до +70°С не превышает 10%. Одна из основных проблем в таких ЗУ - борьба с повреждением слоя кремния под действием электронного луча, который изменяет структуру оксида кремния, вследствие чего она теряет способность приобретать и сохранять электрический заряд.

Таким образом, в отличие от полупроводниковых ЗУ и ЗУ на ЦМД предел поверхностной плотности записи в электронно-лучевых ЗУ не определяются технологическими параметрами, в частности, параметрами литографии. По расходуемой мощности (10 мкВт/бит) ЗУ на электронно-лучевых трубках ЗУ на ПЗС и на ЦМД равноценны. Вместе с тем электронно-лучевые ЗУ обладают тем преимуществом по сравнению с ЗУ на ПЗС, что они способны хранить информацию и в отсутствие напряжения, а по сравнению с ЗУ на ЦМД обладают большей скоростью обработки информации. Однако они чувствительны к паразитному облучению, что требует в отдельных случаях специальных мер по экранировке.

Различные направления машинной памяти развиваются неравномерно. Связано это как с наличием необходимой элементной базы, так и с недостаточностью традиционных средств реализации. Если весь путь развития того или иного направления условно представить в виде цепочки: физические принципы - нахождение и создание необходимых материалов - разработка конструкций - создание технологии - промышленное производство, то на сегодняшний день представляется справедливой следующая картина. Магнитная память на лентах, дисках и т. п. и полупроводниковая память на БИС и СБИС достигли стадии развитого производства; память на ЦМД, ПЗС, оптические дисковые накопители, электронно-оптические, акустические ЗУ начинают выходить постепенно в опытное производство, а в некоторых случаях и в стадию промышленного освоения; голографические, оптоэлектронные, сверхпроводниковые устройства памяти находятся в стадии лабораторных исследований, а разработки молекулярных и биохимических носителей - все еще в стадии отыскания физических принципов. Очевидно, перспективы развития искусственных систем хранения информации должны быть связаны и с использованием новых физических принципов и явлений.

В последнее десятилетие в развитии ряда направлений оптоэлектроники достигнуты очень значительные успехи, которые косвенно, а иногда и прямо способствуют решению проблемы оптической памяти. Созданы полупроводниковые лазеры с высокой степенью когерентности излучения, позволяющие записывать качественные голограммы. Развивается интегральная оптика, в рамках которой традиционные объемные оптические элементы заменяют тонкопленочными. 

Тонкопленочные оптические затворы могут переключаться напряжением всего в несколько вольт, при этом время переключения может быть менее наносекунды.

Интересны соображения, касающиеся возможности использования в оптических ЗУ принципа фотовыжигания спектральных провалов в спектрах примесных молекул в низкотемпературных матрицах. Физическая сущность явления сводится к высокоселективному фотопреобразованию неоднородно расширенных (10 нм) примесных спектров при воздействии монохроматического излучения на фотоактивные примесные молекулы через узкие (10-5—10-3 нм) линии поглощения. Плотность записи на таком носителе может достигнуть фантастической цифры—1012 бит/см2, однако кроме подходящих носителей для реализации ЗУ нужны еще и перестраиваемые лазеры, и системы обеспечения сверхнизких (вплоть до 0,05 К) температур.

При низких (гелиевых) температурах может проявляться также другой замечательный эффект оптической памяти—фотонное (или световое) эхо. Если на специальную среду с резонансными свойствами воздействовать одним или двумя оптическими импульсами, то они вызывают перестройку ее электронной структуры. Если после этого приходит третий—информационный—импульс, то он средой “запоминается”: спустя длительное время после его прохождения (вплоть до десятков секунд) среда генерирует четвертый импульс, импульс—эхо. Используя этот эффект в кристалле, можно записывать и цифровые данные (наличие или отсутствие вспышки), и двумерные картины. Запись производится во всем объеме, при этом плотность размещения информации может достигнуть 1012 бит/см3! Важно, что во время хранения “сгустков света” в кристалле можно проводить еще и их обработку.

Рассматривается и возможность реализации волоконно-оптического ЗУ. Принцип действия такой памяти основан на том, что в кольцевой световод (длиной до 50—100 км) вводят последовательность оптических импульсов, которые достаточно долго циркулируют в нем, “подпитываясь” оптоэлектронными или оптическими регенераторами. В определенных точках световода с помощью направленных ответвителей информация может быть выведена из кольца и преобразована к электрической форме. В такой системе можно, например, на несколько часов запомнить кадр цветного ТВ.

При создании машинной памяти нужно еще многому учиться у мозга, хотя и не следует его слепо копировать. Чисто технический потенциал, например, у голографических ЗУ намного богаче, чем возможности мозга.

Взять лучшее у обоих видов памяти человеческой и машинной - таково стремление разработчиков. Высокая плотность записи, большая емкость памяти высокое быстродействие, способность восприятия и аналоговой, и цифровой информации, сочетание адресного и ассоциативного поиска, объединение последовательного и параллельного принципов ввода/вывода информации, высокая долговечность и надежность хранения - вот основное, чем хотелось бы наделить ЗУ будущего.

Список литературы

Абакумова В.И. Запоминающие устройства ЦВМ.Учебное пособие М. 1970.

Гуральник А.К. Устройства памяти ЦВМ, М.: Сов. Радио, 1976.

Мнеян М.Г. физика машинной памяти, М.: Высшая школа, 1990.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...