Закономерности проведения возбуждения и процессов торможения в нервных центрах. 4 глава
Концентрация инсулина в крови зависит не только от интенсивности образования этого гормона, но и от скорости его разрушения. Инсулин разрушается ферментом инсулиназой, находящейся в печени и скелетных мышцах. Наибольшей активностью обладает инсулиназа печени. При однократном протекании через печень крови может разрушаться до 50% содержащегося в ней инсулина. Инсулин может быть не только разрушен инсулиназой, но и инактивирован присутствующими в крови его антагонистами. Один из них – синальбумин – препятствует действию инсулина на проницаемость клеточных мембран. Уровень глюкозы в крови, помимо инсулина и глюкагона, регулируется соматотропным гормоном гипофиза, а также гормонами надпочечников. Физиология надпочечников. Надпочечники состоят из мозгового и коркового вещества, которое представляет собой разные по структуре и функции железы внутренней секреции, выделяющие резко отличающиеся по своему действию гормоны. Мозговое вещество надпочечников. Мозговое вещество надпочечников состоит из хромаффинных клеток. Они окрашиваются двухромовокислым калием в желто-коричневый цвет, что и послужило поводом назвать их хромаффинными. Хромаффинные клетки встречаются не только в мозговом веществе надпочечников, но и в других участках тела: на аорте, у места разделения сонных артерий, среди клеток симпатических ганглиев малого таза, иногда в толще отдельных ганглиев симпатической цепочки. Все эти клетки относят к так называемой адреналовой системе, так как они вырабатывают адреналин и близкие к нему физиологически активные вещества. Адреналин и норадреналин. Гормон мозгового слоя надпочечников – адреналин – представляет собой производное аминокислоты тирозина. Мозговой слой надпочечников секретирует также норадреналин, являющийся непосредственным предшественником адреналина при синтезе его в клетках хромаффинной ткани. Норадреналин представляет собой медиатор, выделяющийся окончаниями симпатических волокон. По химической структуре – это деметилированный адреналин; он оказывает физиологическое действие, близкое к последнему.
Адреналин и норадреналин объединяют под названием «катехоламины». Их называют также симпатомиметическими аминами, так как действие адреналина и норадреналина на органы и ткани сходно с действием симпатических нервов. Симпатомиметические амины разрушаются ферментами моноаминоксидазой и катехол-0-метилтрансферазой. Адреналин оказывает влияние на многие функции организмов, в том числе на внутриклеточные процессы обмена веществ. Он усиливает расщепление гликогена и уменьшает запас его в мышцах и печени, являясь в этом отношении антагонистом инсулина, который усиливает синтез гликогена. Под влиянием адреналина в мышцах усиливается гликогенолиз, сопровождающийся гликолизом и окислением пировиноградной и молочной кислот. В печени же из гликогена образуется глюкоза, которая затем переходит в кровь; вследствие этого количество глюкозы в крови увеличивается (адреналиновая гипергликемия). Таким образом, действие адреналина влечет за собой, во-первых, использование гликогенного резерва мышц в качестве источника энергии для их работы, во-вторых, увеличенное поступление из печени в кровь глюкозы, которая также может быть использована мышцами при их активной деятельности. Адреналин вызывает усиление и учащение сердечных сокращений, улучшает проведение возбуждения в сердце. Особенно резкое положительное хроно- и инотропное действие адреналин оказывает на сердце в тех случаях, когда сердечная мышца ослаблена. Адреналин суживает артериолы кожи, брюшных органов и тех скелетных мышц, которые находятся в покое. Адреналин не суживает сосуды работающих мышц.
Адреналин ослабляет сокращения желудка и тонкого кишечника. Перистальтические и маятникообразные сокращения уменьшаются или совсем прекращаются. Снижается тонус гладких мышц желудка и кишок. Бронхиальная мускулатура при действии адреналина расслабляется, вследствие чего просвет бронхов и бронхиол расширяется. Адреналин вызывает сокращение радиальной мышцы радужной оболочки, в результате чего зрачки расширяются. Введение адреналина повышает работоспособность скелетных мышц (особенно если до этого они были утомлены). Под влиянием адреналина повышается возбудимость рецепторов, в частности сетчатки глаза, слухового и вестибулярного аппарата. Это улучшает восприятие организмом внешних раздражителей. Таким образом, адреналин вызывает экстренную перестройку функций, направленную на улучшение взаимодействия организма с окружающей средой, повышение работоспособности в чрезвычайных условиях. Действие норадреналина на функции организма сходно с действием адреналина, но не вполне одинаково. У человека норадреналин повышает периферическое сосудистое сопротивление, а также систолическое и диастолическое давление в большей мере, чем адреналин, который приводит к подъему только систолического давления. Адреналин стимулирует секрецию гормонов передней доли гипофиза, норадреналин же не вызывает подобного эффекта. Кора надпочечников. В коре надпочечников различают три зоны: наружную – клубочковую, среднюю – пучковую и внутреннюю – сетчатую. Из коры надпочечников выделено около 50 кортикостероидов, однако только 8 из них являются физиологически активными. Гормоны коры надпочечников делятся на три группы: 1. Минералокортикоиды – альдостерон и дезоксикортикостерон, выделяемые клубочковой зоной и регулирующие минеральный обмен. 2. Глюкокортикоиды – гидрокортизон, кортизон и кортикостерон (последний является одновременно и минералокортикоидом), выделяемые пучковой зоной и влияющие на углеводный, белковый и жировой обмен. 3. Половые гормоны – андроген, эстроген, прогестерон, выделяемые сетчатой зоной.
Минералокортикоиды. Минералокортикоиды участвуют в регуляции минерального обмена организма и в первую очередь уровня натрия и калия в плазме крови. Из минералокортикоидов наиболее активен альдостерон (у человека – это единственный представитель минералокортикоидов). В клетках эпителия канальцев почки он активирует синтез ферментов, повышающих энергетическую эффективность натриевого насоса. Вследствие этого увеличивается работоспособность натрия и хлора в канальцах почек, что ведет к повышению содержания натрия в крови, лимфе и тканевой жидкости. Одновременно он снижает реабсорбцию калия в канальцах почек, а это приводит к потере калия и уменьшает его содержание в организме. Подобные изменения возникают в клетках эпителия желудка и кишечника, слюнных и потовых желез. Таким путем альдостерон может предотвратить потерю натрия при сильном потоотделении во время перегревания. Увеличение под влиянием альдостерона концентрации натрия в крови и тканевой жидкости повышает их осмотическое давление, приводит к задержке воды в организме и способствует возрастанию уровня артериального давления. Вследствие этого тормозится выработка ренина почками. Усиленная реабсорбция натрия может привести к развитию гипертонии. При недостатке минералокортикоидов реабсорбция натрия в канальцах почек уменьшается и организм теряет такое большое количество натрия, что возникают изменения внутренней среды, несовместимые с жизнью, и через несколько дней после удаления коры надпочечников наступает смерть. Введением минералокортикоидов или больших количеств хлорида натрия можно поддержать жизнь животного, у которого удалены надпочечники. Поэтому минералокортикоиды образно называют гормонами, сохраняющими жизнь. Регуляция уровня минералокортикоидов в крови. Количество минералокортикоидов, выделяемых надпочечниками, находится в прямой зависимости от содержания натрия и калия в организме. Повышенное количество натрия в крови тормозит секрецию альдостерона. Недостаток натрия в крови, наоборот, вызывает повышение секреции альдостерона. Таким образом, ионы Na+ регулируют интенсивность функции клеток клубочковой зоны надпочечников непосредственно. Ионы К+ также действуют непосредственно на клетки клубочковой зоны надпочечников. Их влияние противоположно влиянию ионов Na+, а действие выражено слабее. Адренокортикотропный гормон гипофиза, влияя на эту зону, также увеличивает секрецию альдостерона, но эффект этот выражен слабее нежели влияние адренокортикотропного гормона на выработку глюкокортикоидов.
Глюкокортикоиды. Глюкокортикоиды (кортизон, гидрокортизон, кортикостерон) оказывают влияние на углеводный, белковый и жировой обмен. Наиболее активен из них кортизол. Свое название глюкокортикоиды получили из-за способности повышать уровень сахара в крови вследствие стимуляции образования глюкозы в печени. Полагают, что этот процесс осуществляется путем ускорения процессов дезаминирования аминокислот и превращения их безазотистых остатков в углеводы (глюконеогенез). Содержание гликогена в печени при этом может даже возрастать. Этим существенно отличается глюкокортикоиды от адреналина, при введении которого содержание глюкозы в крови увеличивается, но запас гликогена в печени уменьшается. Глюкокортикоиды влияют также на обмен жиров. Они усиливают мобилизацию жира из жировых депо и его использование в процессе энергетического обмена. Таким образом, эти гормоны оказывают многообразное влияние на метаболизм, изменяя как энергетические, так и пластические процессы. Глюкокортикоиды возбуждают центральную нервную систему, приводят к бессоннице, эйфории, общему возбуждению. Глюкокортикоиды способствуют развитию мышечной слабости и атрофии скелетной мускулатуры, что связано с усилением распада мышечных белков, а также снижением уровня кальция в крови. Они тормозят рост, развитие и регенерацию костей скелета. Кортизон угнетает продукцию гиалуроновой кислоты и коллагена, тормозит пролиферацию и активность фибробластов. Все это приводит к дистрофии и дряблости кожи, появлению морщин. Кортизон повышает чувствительность сосудов мышц к действию сосудосуживающих агентов и снижает проницаемость эндотелия. В больших дозах глюкокортикоиды увеличивают сердечные выбросы. Отсутствие глюкокортикоидов не приводит к немедленной гибели организма. Однако при недостаточной секреции глюкокортикоидов понижается сопротивляемость организма различным вредным воздействиям, поэтому инфекции и другие патогенные факторы переносятся также и нередко приводя к гибели.
Факторы, влияющие на интенсивность образования глюкокортикоидов. При боли, травме, кровопотере, перегревании, переохлаждении, некоторых отравлениях, инфекционных заболеваниях, тяжелых психических переживаниях выделение глюкокортикоидов усиливается. При данных состояниях рефлекторно усиливается секреция адреналина мозговым слоем надпочечников. Поступающий в кровь адреналин воздействует на гипоталамус, вызывая усиление образования в некоторых его клетках полипептида – кортикотропинвысвобождающего фактора, способствующего образованию в передней доле гипофиза адренокортикотропного гормона. Этот гормон является фактором, стимулирующим выработку в надпочечнике глюкокортикоидов. При удалении гипофиза наступает атрофия пучковой зоны коры надпочечников и секреция глюкокортикоидов резко снижается. Можно отметить общность функционального значения внутренней секреции мозгового и коркового слоев надпочечника. Их гормоны обеспечивают усиление защитных реакций при чрезвычайных, угрожающих нормальному состоянию организма воздействиях – аварийных ситуациях. При этом мозговое вещество, выделяющее адреналин, способствует усилению активных поведенческих реакций организма, в корковое вещество, деятельность которого стимулируется через гипоталамус тем же адреналином, выделяет гормоны, усиливающие внутренние факторы сопротивляемости организма. Половые гормоны коры надпочечников. Половые гормоны коры надпочечников – андрогены и эстрогены – играют важную роль в развитии половых органов в детском возрасте, т.е. на том этапе онтогенеза, когда внутрисекреторная функция половых желез еще слабо выражена. Физиология половых желез. Физиологическая роль половых гормонов состоит в обеспечении способности выполнять половые функции. Эти гормоны необходимы для полового созревания, т.е. такого развития организма и его полового аппарата, при котором возможны половой акт и деторождение. Благодаря этим гормонам осуществляется развитие вторичных половых признаков, т.е. тех особенностей половозрелого организма, которые не связаны непосредственно с половой деятельностью, но являются характерными отличиями мужского и женского организма. В женском организме половые гормоны играют большую роль в возникновении половых циклов, в обеспечении нормального протекания беременности и в подготовке к кормлению новорожденного. Удаление половых желез носит название кастрации. После кастрации образование в организме половых гормонов не прекращается полностью. В кровь и мочу продолжают поступать андрогены и эстрогены из коркового слоя надпочечников, однако в значительно меньшем количестве, чем при наличии половых желез. Это влечет за собой ряд характерных изменений. Если кастрация произведена задолго до половой зрелости, половое созревание прекращается, половой член, предстательная железа, влагалище, матка не достигают зрелого состояния и даже регрессируют (подвергаются обратному развитию), вторичные половые признаки не развиваются. Если же кастрация произведена после наступления половой зрелости, половой аппарат регрессирует в меньшей степени, а вторичные половые признаки частично сохраняются. Вторичные половые признаки, которые сохраняются после кастрации половозрелого организма, называются независимыми половыми признаками, а те, которые утрачиваются – зависимыми. В норме в организме обоих полов образуются и мужской и женский гормоны. При нарушении функции яичников или семенников, встречающемся у человека, изменяется соотношение продукции этих гормонов. Такое нарушение получило название интерсексуальности и может проявляться у мужчин наличием некоторых особенностей (физических и психических), свойственных женщинам, а у женщин – некоторыми мужскими чертами. Мужской половой гормон тестостерон (а по новым данным, также и эстроген) образуется в интерстициальной ткани. По этой причине интерстициальную ткань семенников называют пубертатной железой. Согласно некоторым данным, эпителии семяобразующих трубочек также участвуют в образовании андрогенов, среди которых наиболее активен упомянутый выше тестостерон. В яичниках эстрогены (эстрол, эстриол, эстрадиол) образуются в зернистом слое фолликулов и граафовых пузырьков, а также в их внутренней оболочке. В структурах яичника образуются также андрогены. Материалом, из которого синтезируются половые гормоны, служат холестерин и дезоксикортикостерон (образующийся в коре надпочечников). В желтом теле яичника, которое развивается на месте лопнувшего пузырчатого яичникового фолликула (графов пузырек) после его разрыва и выхода из него яйцеклетки, образуется гормон прогестерон, обеспечивающий нормальное протекание беременности. Регуляция деятельности половых желез. Деятельность половых желез регулируется нервной системой и гормонами гипофиза, а также эпифиза. Яичники, подобно другим железам внутренней секреции, богато снабжены афферентными и эфферентными нервами. Однако прямая нервная (проводниковая) регуляция их функции не доказана. Центральная нервная система играет важную роль в обеспечении нормального полового цикла. Сильные эмоции – испуг, тяжелое горе – могут нарушить половой цикл и даже вызвать его прекращение на более или менее продолжительный срок (эмоциональная аменорея). Нервная, регуляция половых желез осуществляется путем рефлекторного изменения внутренней секреции гипофиза. Так, у крольчихи половой акт стимулирует процесс овуляции (выход яйцеклетки из пузырчатого яичникового фолликула вследствие рефлекторного усиления секреции гормонов гипофиза). От рефлекторного усиления внутрисекреторной функции гипофиза зависит стимулирование овуляции, происходящее у некоторых птиц под влиянием света. В регуляции деятельности половых желез решающее значение имеют гонадотропные гормоны или гонадотропин, образуемые передней долей гипофиза. Их введение в растущий организм ускоряет и усиливает развитие полового аппарата и вторичных половых признаков вследствие стимулирования эндокринной функции половых желез. Существуют три гонадотропина: фолликулостимулирующий, лютеинизирующий и пролактин. Фолликулостимулирующий гормон у самок ускоряет развитие в яичниках фолликулов и превращение их в пузырчатые яичник4овые фолликулы, у самцов он ускоряет развитие сперматогенных трубочек в семенниках и сперматогенез, т.е. образование сперматозоидов, а также развитие предстательной железы. Лютеинизирующий гормон стимулирует развитие внутрисекреторных элементов в семенниках и яичниках и ведет тем самым к усилению образования половых гормонов (андрогенов и эстрогенов). Он определяет в яичнике овуляцию и образование на месте лопнувшего граафова пузырька желтого тела, которое вырабатывает гормон прогестерон. Пролактин, или лютеотропный гормон гипофиза, стимулирует образование прогестерона в желтом теле и лактацию. После удаления гипофиза у неполовозрелых животных развитие половых желез замедляется и остается незаконченным. Не завершается также развитие полового аппарата: полового члена, предстательной железы, влагалища, матки, яйцеводов. В семенниках не происходит образования сперматозоидов, а в яичниках фолликулы не достигают зрелости и не превращаются в пузырчатые яичниковые фолликулы. При удалении гипофиза у половозрелых животных отмечается атрофия семяобразующих трубочек, интерстициальной (пубертатной) ткани в семенниках, исчезновение граафовых пузырьков и желтого тела, атрофия фолликулов в яичниках. Если таким животным произвести пересадку гипофиза, то состояние половых желез нормализуется. Противоположное гипофизу действие на функции полового аппарата оказывает гормон эпифиза – мелатонин, который угнетает развитие половых желез и их активность. ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ. Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами (костным мозгом, лимфоузлами, селезенкой) образует физиологическую систему крови. В организме взрослого человека около 4-6 литров крови, что составляет 6-8% от массы тела. Основными функциями системы крови являются: 1. Транспортная, она включает: · Дыхательную – транспорт дыхательных газов О2 и СО2 от легких к тканям и наоборот; · Трофическую – перенос питательных веществ, витаминов, микроэлементов; · Выделительную – транспорт продуктов обмена к органам выделения; · Терморегуляторную – удаление избытка тепла от внутренних органов и мозга к коже; · Регуляторную – перенос гормонов и других веществ, входящих в гуморальную систему регуляции организма. 2. Гомеостатическая. Кровь обеспечивает следующие процессы гомеостаза: · Поддержание pH внутренней среды организма; · Сохранение постоянства ионного и водно-солевого баланса, как следствие осмотического давления. 3. Защитная функция. Обеспечивается содержащимися в крови иммунными антителами, неспецифическими противовирусными и антибактериальными веществами, фагоцитарной активностью лейкоцитов. 4. Гемостатическая функция. В крови имеется ферментная система свертывания, препятствующая кровотечению. Состав крови. Основные физиологические константы крови. Кровь состоит из плазмы и взвешенных в ней форменных элементов – эритроцитов, лейкоцитов и тромбоцитов. Соотношение объема форменных элементов и плазмы называется гематокритом. В норме форменные элементы занимают 42-45% объема крови, а плазма – 55-58%. У мужчин объем форменных элементов на 2-3% больше, чем у женщин. Гематокрит определяется путем центрифугирования крови, содержащей цитрат натрия, в капиллярах со 100 делениями. Удельный вес целостной крови 1,052-1,061 г/см3. Ее вязкость равна 4,4-4,7 пуаз, а осмотическое давление 7,6 атм. Большая часть осмотического давления обусловлена находящимися в плазме катионами натрия и калия, а также анионами хлора. Растворы, осмотическое давление которых выше осмотического давления крови, называются гипертоническими. Это, например, 10% раствор хлорида натрия или 40% глюкозы. Если осмотическое давление раствора ниже, чем крови он называется гипотоническим (0,3% NaCl). В клинике, для переливания больших количеств кровезамещающих растворов используют изотонические растворы. Их осмотическое давление такое же, как у крови. Таким является физиологический раствор, содержащий 0,85% хлорида натрия. Белки крови, являясь коллоидами, также создают небольшое давление, называемое онкотическим. Его величина 0,03атм. или 25-30 мм рт ст. Состав, свойства и значение компонентов плазмы. Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6 пуаз. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном хлорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме того, в нем имеются глюкоза, а также продукты гидролиза белков – мочевина, креатинин, аминокислоты и т.д. Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного азота 14,3-28,6 ммоль/л. Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов содержится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17г альбуминов и 5 г глобулинов. Функции альбуминов плазмы: 1. Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеобразование. 2. Служат белковым резервом крови, который составляет около 200 г белка. Он используется организмом при белковом голодании. 3. Благодаря отрицательному заряду способствует стабилизации крови как коллоидной системы, препятствуя оседанию форменных элементов крови. 4. Поддерживают кислотно-щелочное равновесие, являясь буферной системой. 5. Переносит половые гормоны, желчные пигменты и ионы кальция. Эти же функции выполняют и другие фракции белков, но в значительно меньшей мере. Им свойственны особые функции. Глобулины включают четыре субфракции – альфа-1-, альфа-2-, бета-, гамма-глобулины. Функции глобулинов: 1. Альфа-глобулины участвуют в регуляции эритропоэза, т.к. один из них является эритропоэтином. 2. Необходимы для свертывания крови, т.к. к ним относится один из факторов свертывания – протромбин. 3. Участвуют в растворении тромба, т.к. содержат фермент фибринрлоточеской системы – плазминоген. 4. Альфа-2-глобулин – церулоплазмин переносит 90% ионов меди, необходимых организму. 5. Переносят гормоны тироксин и кортизол. 6. Бета-глобулин трансферин переносит основную массу железа. 7. Несколько бета-глобулинов являются факторами свертывания крови. 8. Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови – тромб. 9. Гамма-глобулины выполняют защитную функцию, являясь иммуноглобулинами. Механизмы поддержания кислотно-щелочного равновесия крови. Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и гидролиза различных веществ, поддержания ионных градиентов в клетках, транспорта газов и т.д. Активная реакция среды определяется соотношением водородных и гидроксильных ионов. Постоянство кислотно-щелочного равновесия внутренней среды поддерживается буферными системами крови и физиологическими механизмами. Буферные системы – это комплекс слабых кислот и оснований, который способен препятствовать сдвигу реакции в ту или иную сторону. Кровь содержит следующие буферные системы: 1. Бикарбонатная (гидрокарбонатная). Она состоит из свободной угольной кислоты и гидрокарбонатов натрия и калия (NaHCO3 и KHCO3). При накоплении в крови щелочей они взаимодействуют с угольной кислотой. Образуется гидрокарбонат и вода. Если кислотность крови возрастает, то кислоты соединяются с гидрокарбонатами. Образуются нейтральные соли и угольная кислота. В легких она распадается на углекислый газ и воду, которые выдыхаются. 2. Фосфатная буферная система. Она является комплексом гидрофосфата и дигидрофосфата натрия (Na2HPO4 и NaH2PO4). Первый проявляет свойства основания, второй слабой кислоты. Кислоты образуют с гидрофосфатом натрия нейтральную соль и дигидрофосфат натрия (Na2HPO4 + H2CO3 = NaHCO3 + NaH2PO4). 3. Белковая буферная система. Белки являются буфером благодаря своей амфотерности, т.е. в зависимости от реакции среды они проявляют либо щелочные, либо кислотные свойства. Щелочные свойства им придают концевые аминогруппы белков, а кислотные карбоксильные. Хотя буферная емкость белковой системы небольшая, она играет важную роль в межклеточной жидкости. 4. Гемоглобиновая буферная система эритроцитов. Самая мощная буферная система. Состоит из восстановленного гемоглобина и калиевой соли оксигемоглобина. Аминокислота тистидин, входящая в структуру гемоглобина, имеет карбоксильные и амидные группировки. Первые обеспечивают гемоглобину свойства слабой кислоты, вторые – слабого основания. При диссоциации оксигемоглобина в капиллярах тканей на кислород и гемоглобин, последний приобретает способность связываться с катионами водорода. Они образуются в результате диссоциации, образовавшиеся из углекислого газа угольной кислоты. Угольная кислота образуется из углекислого газа и воды под действием фермента карбоангидразы, имеющейся в эритроцитах (формула). Анионы угольной кислоты связываются с катионами калия, находящимися в эритроцитах и катионами натрия в плазме крови. Образуются гидрокарбонаты калия и натрия, сохраняющие буферную емкость крови. Кроме того, восстановленный гемоглобин может непосредственно связываться с углекислым газом с образованием карбгемоглабина. Это также препятствует сдвигу реакции крови в кислую сторону. Физиологические механизмы поддержания кислотно-щелочного равновесия обеспечиваются легкими, почками, ЖКТ, печенью. С помощью легких из крови удаляется угольная кислота. В организме ежеминутно образуется 10 ммоль угольной кислоты. Закисление крови не происходит потому, что из нее образуются бикарбонаты. В капиллярах легких из анионов угольной кислоты и протонов вновь образуется угольная кислота, которая под влиянием фермента карбоангидразы расщепляется на углекислый газ и воду. Они выдыхаются. Через почки из крови выделяются нелетучие органические и неорганические кислоты. Они выводятся как в свободном состоянии, так и в виде солей. В физиологических условиях почки моча имеет кислую реакцию (pH = 5-7). Почки участвуют в регуляции кислотно-щелочного гомеостаза с помощью следующих механизмов: 1. Секреция эпителием канальцев водородных ионов, образовавшихся из угольной кислоты, в мочу. 2. Образование в клетках эпителия гидрокарбонатов, которые поступают в кровь и увеличивают ее щелочной резерв. Они образуются из угольной кислоты и катионов натрия и калия. Первые 2 процесса обусловлены наличием в этих клетках карбоангидразы. 3. Синтез аммиака, катион которого может связываться с катионом водорода. 4. Обратное всасывание в канальцах из первичной мочи в кровь гидрокарбонатов. 5. Фильтрация в мочу избытка кислых и щелочных соединений. Значение органов пищеварения для поддержания кислотно-щелочного равновесия небольшое. В частности, в желудке в виде соляной кислоты выделяются протоны. Поджелудочной железой и железами тонкого кишечника – гидрокарбонаты. Но в то же время и протоны, и гидрокарбонаты обратно всасываются в кровь. В результате реакция крови не изменяется. В печени из молочной кислоты образуется гликоген. Однако нарушение функций пищеварительного канала сопровождается сдвигом реакции крови. Так, стойкое повышение кислотности желудочного сока приводит к увеличению щелочного резерва крови. Это же возникает при частой рвоте из-за потери катионов водорода и хлоридов. Кислотно-щелочной баланс крови характеризуется несколькими показателями: 1. Актуальный рН. Это фактическая величина рН крови. В норме артериальная кровь имеет рН = 7,35-7,45. 2. Парциальное напряжение СО2 (РСО2). Для артериальной крови 36-44 мм рт ст. 3. Стандартный бикарбонат крови (SB). Содержание бикарбонат (гидрокарбонат) анионов при стандартных условиях, т.е. нормальном насыщении гемоглобина кислородом. Величина 21,3-24,8 ммоль/л. 4. Актуальный бикарбонат крови (АВ). Истинная концентрация бикарбонат анионов в норме практически не отличается от стандартного, но возможны физиологические колебания от 19 до 25 ммоль/л. Раньше этот податель называли щелочным резервом. Он определяет способность крови нейтрализовать кислоту.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|