Основные теоретические положения
Особенностью ферромагнитных материалов является значительно бóльшая, чем у диамагнитных материалов, магнитная индукция при одном и том же значении напряженности магнитного поля. Кривая намагничивания ферромагнитного материала обычно определяется экспериментальным путем и представляет собой нелинейную зависимость (рис. 21), которая получила название кривой первоначального намагничивания. Имея данную кривую, можно построить зависимость абсолютной магнитной проницаемости ферромагнетика от напряженности магнитного поля , т. е. (рис. 22).
Если ферромагнитный материал подвергается воздействию переменного по значению и направлению магнитного поля, то основной характеристикой этого ферромагнетика является петля гистерезисного цикла. Для каждого наибольшего значения напряженности магнитного поля H max получается своя петля гистерезисного цикла, а кривая, проведенная через вершины всех петель гистерезиса, называется основной кривой намагничивания (рис. 23). Площадь, ограниченная петлей гистерезиса, и очертания основной кривой намагничивания зависят от значения напряженности магнитного поля и от свойств ферромагнитного материала. По величине этой площади можно судить о потерях энергии в ферромагнетике на гистерезис и вихревые токи. Важной магнитной характеристикой ферромагнетиков в переменном магнитном поле является его абсолютная амплитудная, или динамическая, проницаемость , которая определяется по выражению: , (54) где значения B max, H maxпринимаются по динамической кривой намагничивания. При незначительной частоте намагничивающего тока и тонких листах ферромагнетика магнитная проницаемость .
Для исследования магнитных свойств ферромагнитных материалов в лабораторной работе используем сердечник из трансформаторной стали (рис. 24). Наличие двух независимых обмоток на сердечнике позволяет измерять ток в намагничивающей обмотке и индуцированную ЭДС во вторичной обмотке. В свою очередь, зная эти величины, можно определить значения напряженности магнитного поля H max и магнитной индукции B max. Для определения значения напряженности магнитного поля запишем закон полного тока для рассматриваемой магнитной цепи (рис. 24): . (55) Интегрирование в формуле (55) можно заменить суммированием по отдельным однородным участкам магнитной цепи и, считая в пределах участка постоянной, записать: . Зная число витков намагничивающей обмотки, определим напряженность магнитного поля, A/м: , (56) где – длина средней силовой линии магнитного потока, м. Максимальное значение напряженности магнитного поля . (57) Значение ЭДС, наводимой во вторичной обмотке, определим по формуле: , (58) где – площадь поперечного сечения образца ферромагнитного материала, м2; – число витков вторичной обмотки; Гц – частота питающей сети. Определив опытным путем ЭДС E 2, рассчитаем B max по формуле, Тл:
. (59)
Подводя к намагничивающей обмотке различное напряжение, вызывающее появление тока I, можно по выражениям (57), (59) и (54) определить соответствующие значения H max, B max и динамической проницаемости , построить экспериментальные зависимости B max = f (H max)и = f (H max)для исследуемого ферромагнитного материала. Данный метод, получивший название метода амперметра и вольтметра, является простым, но недостаточно точным (погрешность порядка 10 – 15 %), однако из-за своей простоты он часто применяется для исследования образцов ферромагнитных материалов.
Читайте также: C - Мазхабы «итикади» (теоретические направления) Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|