Методика изучения арифметических действий в пределах 1000
Все действия в пределах 1000 без перехода через разряд учащиеся выполняют приемами устных вычислений с записью в строчку, а с переходом через разряд — приемами письменных вычислений с записью в столбик. Важно постепенное нарастание трудности при решении арифметических примеров. Каждый последующий случай в решении примеров должен опираться на знание предыдущих случаев. Непреодолимые трудности для умственно отсталого ребенка могут возникнуть при решении трудных случаев, если пропустить одно из звеньев в цепи решения примеров. Поэтому очень важно соблюдать последовательность в выборе примеров, учитывая их нарастающую степень трудности, и тщательно отрабатывать каждый случай. СЛОЖЕНИЕ И ВЫЧИТАНИЕ В ПРЕДЕЛАХ 1000 В изучении действий сложения и вычитания в пределах 1000 можно выделить следующие этапы: I. Сложение и вычитание без перехода через разряд (устно). 1. Сложение и вычитание круглых сотен. 192
200+100 300+200 Действия производятся на основе знания нумерации и сводятся лцеству к действиям в пределах 10. Рассуждения проводятся 200 — это 2 сотни, 100 — это 1 сотня. — это 300. 200+100=300 .-! сот. + 1 сот.=3 сот. 3 сотни 500-200=? 5 сот.-2 сот.=3 сот.=300 500-200=300 Отдельным учащимся, которые еще нуждаются в использовании средств наглядности, можно предложить пучки палочек (1000 "милочек, связанных в пучки по сотне), пластины из арифметического ящика, полоски длиной 1 м, разделенные каждая на 100 см, н'>ак, счеты. Полезно решение и составление троек примеров вида
4+ 2 = 40+ 20= 400+200= | последующим сопоставлением компонентов и результатов действий. 2. Сложение и вычитание круглых сотен и единиц, круглых
а) 300+ 5 305- 5 б) 300+ 40 340- 40 5+300 305-300 40+300 340-300 в) 300+ 45 345- 45 45+300 345-300 3. Сложение и вычитание круглых десятков, а также круглых
б) 430+200 630-200 При решении случаев а), б) рассуждения проводятся так: «430 — это 4 сот. и 3 дес., 20 — это 2 дес. Складываем десятки: 3 дес.+2 дес. = 5 дес. 4 сот.+5 дес.=450». Разряды, которые складываются или вычитаются, можно рекомендовать подчеркивать: 430+200=630 630-200=430 Перова М. Н. При решении примеров вида в) рассуждения проводятся т|| «120=100+20, 430+100=530, 530+20=550», т. е. этот случ(сложения (вычитания) сводится к уже известным учащимся с/ чаям сложения (вычитания) а), б). 4. Сложение трехзначных чисел с однозначным, двузначным | трехзначным без перехода через разряд и соответствующие сл\ чаи вычитания:
Выполнение действий производится устно. Учащиеся при выпол«нении действий пользуются теми же приемами, какими они пользо^ вались при изучении действий сложения и вычитания в пределах! 100, т. е. раскладывают второй компонент действия (второе слагав-; мое или вычитаемое) на разрядные единицы и последовательно их] складывают или вычитают из первого компонента. Например:
673-123
123=100+20+3 350+100=450 450+ 20=470 470+ 3=473 5. Особые случаи сложения и вычитания. К ним относятся 1 случаи, которые вызывают наибольшие трудности и в которых ] чаще всего допускаются ошибки. Учащихся больше всего затрудняют действия с нулем (нуль находится в середине числа или в конце). Случай с числами, содержащими нуль, не требует особых приемов. Но таких примеров надо решать больше, повторить перед решением таких примеров решение примеров на сложение и вычитание, когда компонентом действия является нуль: 0+3, 5+0, 5-5:
а) 308+121 б) 402-201 в) 736-504 308+100=408 402-200=202 736-500=236 408+ 20=428 202- 1=201 236- 4=232 г) 0+436 700-0 725-725 х'стные приемы вычислений требуют от учащихся постоянного шза чисел по их десятичному составу, понимания места ры в числе, понимания того, что действия можно производить ко над одноименными разрядами. Не всем учащимся вспомо-льной школы это становится понятным одновременно. 11еред выполнением действий необходимо добиваться от уча-ц\ся предварительного анализа десятичного состава чисел. Учи-и- п. чаще должен ставить вопросы: «С чего надо начинать сложе-|пм"> Какие разряды складываем?» 15 противном случае учащиеся допускают ошибки при вычислениях. Они складывают десятки с сотнями, а результат записывают "|Ц)0 в разряд сотен, либо в разряд десятков, например: 100+10=500, 30+400=70, 30+400=470, 30+400=340, (./0+2=690, 670-3=640. Эти ошибки свидетельствуют о непонимании позиционного значения цифр в числе, о неумении самостоятельно контролировать результаты действий. Учителю необходимо добиваться того, чтобы учащиеся проверяли выполнение действий, причем делали это не формально, а по существу. Нередко приходится наблюдать, что ученик якобы и сделал проверку, но выполнил ее формально. Он написал только обратное действие, а не решал, поэтому и не заметил допущенной ошибки, например: 490—280=110. Проверка. 110+280=490. Нередко можно столкнуться с непониманием умственно отсталыми школьниками (даже старших классов) сущности проверки. Проверка часто выполняется учениками только потому, что этого либо требует учитель, либо такое задание содержится в учебнике. Часто при выполнении проверки ученик получает несоответствие между полученным результатом и заданным примером, но это не служит ему поводом для исправления неверного ответа, например: 570-150=320. Проверка. 320+150=470. В данном случае проверка выступает как самостоятельное действие, никак не связанное с тем, которое ученик проверяет. Учитель постоянно должен помнить об этих ошибках школьников с нарушением интеллекта и требовать ответа на вопросы: «Что показала проверка? Верно ли решен пример? Как доказать, что действие выполнено верно?» Осознанному выполнению устных вычислений, выработке обобщенных способов выполнения действий служит постоянное внима-
ние к вопросам сравнения и сопоставления разных по трудно случаев сложения, вычитания. Важно научить учащихся вид| общее и особенное в тех примерах, которые они решают. Например, сравнить примеры и объяснить их решение: 30+5, 300+40, 300+45, 300+140, 300+145, 300+105. 305-5, 340-40, 345-45, 340-300, 345-300, 345-200. Полезно и составление учащимися примеров, аналогичных (г хожих) данным, или примеров определенного вида: «Составьт! пример, в котором надо сложить круглые сотни с единицами»;! «Составьте пример на вычитание, в котором уменьшаемое — | трехзначное число, а вычитаемое — круглые десятки» и т. д.1 Для закрепления действий сложения и вычитания в предела» 1000 приемами устных вычислений полезно решение примеров с| неизвестными компонентами. II. Сложение и вычитание с переходом через) разряд. Сложение и вычитание с переходом через разряд — это наибо«| лее трудный материал. Поэтому учащиеся выполняют действия столбик. Сложение и вычитание в столбик производятся над каж-| дым разрядом в отдельности и сводятся к сложению и вычитании в пределах 20. Но в этом случае возникают у умственно отсталь школьников трудности в записи чисел, т. е. в умении правильно подписать разряд под соответствующим разрядом. Часто из-за неумения организовать внимание, из-за недостаточно четкого понимания позиционного значения цифр в числе, а то и из-за небрежности при записи цифр ученики сдвигают число, которое нужно прибавить или вычесть, влево или вправо и поэтому допуска-; ют ошибки в вычислениях. Особенно много ошибок учащиеся допускают при записи чисел в столбик, если действие производится над трехзначным и двузначным или однозначным числом. В этом случае десятки подписываются под сотнями, единицы под сотнями или десятками. Это приводит к ошибкам в вычислениях. Например: 375 375 238 + 6 +38 ~18 ~~975~ "775" 58 Наибольшие трудности вызывает действие вычитания. Ошибки в вычислениях носят различный характер. Причиной некоторых из Слабоуспевающим учащимся разрешается выполнение всех случаев в стол- бик.
Их является слабое усвоение табличного сложения и вычитания I пределах 20. 238 275 +__ 7 ~ 7 246 26ТГ Много ошибок допускается в результате того, что ученики _____ "218 ~29Т ~ТЗТ
Особенно трудны случаи, при решении которых: 1) переход через разряд происходит в двух разрядах; 2) получается нуль в одном из разрядов; 3) содержится нуль в уменьшаемом; 4) в середине уменьшаемого стоит единица. Например:
"-"• з •? к КПП
546 ~287 ~36Т 710 710 ~345 ~345 —^ту^- —тге- или Нередко при вычитании можно встретить и такую ошибку: вместо того чтобы «занять» единицу высшего разряда, раздробить ее, ученик начинает вычитать из большей цифры вычитаемого меньшую цифру соответствующего разряда уменьшаемого. Например:" 375 529 ^___ 8 ~145 373 424 При этом рассуждение проводится так: «Из 5 единиц 8 единиц вычесть нельзя, вычитаем из 8 единиц 5, 7 десятков и 3 сотни сносим, разность 373». Учитывая трудности изучения данной темы, необходимо повторить с учащимися сложение и вычитание с переходом через разряд в пределах 20 и 100, обратить внимание на решение примеров, в которых компонентом является нуль, или нуль получается в одном из разрядов суммы или __________,_______ :_____________ разности (17+3, 25+15, 36-6, 36—27), или нуль содержится в одном из разрядов уменьшаемого или вычитаемого (60—45, 75—40). I Тем учащимся, которые долгое время не усваивают запис! примеров в столбик, можно разрешить записывать их в разряди) сетку. При решении примеров на сложение и вычитание с переходе через разряд соблюдается следующая последовательность: 1) сложение и вычитание с переходом через разряд в одно разряде (единиц или десятков):
375 "146
Особого внимания заслуживает решение примеров вида 800— —236, 810—236, 810—206. Следует сопоставить сначала 1-й и 2-й, а потом 2-й и 3-й примеры, особенности их решения, объяснить, в чем их различие, почему получаются разные ответы.
2) сложение и вычитание с переходом через разряд в двуй 3) особые случаи сложения и вычитания, когда в сумме или в 4) вычитание трехзначных, двузначных и однозначных чисел из 1000: 1000-375, 1000-75, 1000-5.
При объяснении решения примеров с переходом через разряд, учитывая, что умственно отсталые школьники при сложении забывают прибавлять то число, которое надо запомнить, можно разрешать надписывать это число над соответствующим разрядом. Например: + 375 118 ~493~ При вычитании же ставится точка над тем разрядом, из которого заняли единицу. Можно поставить и число 10, которое записывается над разрядом, к единицам которого этот десяток прибавляется. При выполнении действий на сложение и вычитание в пределах 1000 решаются примеры с тремя компонентами без скобок и с круглыми скобками: 375+36+124; 379+(542-276); 910-375--264, 375+186-264, 1000-565+136. Решаются также примеры на нахождение неизвестных компонентов действий. Проверка выполняется двумя действиями. Умножение и деление в пределах 1000 Умножение и деление так же, как сложение и вычитание, могут производиться как устными, так и письменными приемами вычислений, записываться в строчку и столбик. I. Устное умножение и деление в пределах 1000. 1. Умножение и деление круглых сотен. Умножение и деление круглых сотен основывается на знании учащимися нумерации, а также табличного умножения и деления. Поэтому, прежде чем знакомить учащихся с умножением и делением круглых сотен, необходимо повторить табличное умножение и деление, а также раздробление сотен в единицы и наоборот. Например: «Сколько содержит 1 сотня единиц? Сколько единиц в 5, 7, 10 сотнях? Сколько сотен составляют 300 единиц? 500 единиц?» И т. д. Объяснение умножения и деления должно сопро- вождаться операциями с наглядными пособиями и дидактичес|| материалом. Покажем объяснение умножения, а потом деления. Например, надо 200-2. Рассуждаем так: 200 — это 2 соТ| При делении 200:2 рассуждаем так: 200 — это 2 сотни. Воз! мем 2 сотни палочек. Если разделить их на две равные части, -т в каждой части получится по одной сотне, или по 100 единим Запишем: 2 сот.:2=1 сот. = 100, 200:2=100. Полезно сопоставим, умножение и деление единиц, десятков и сотен: ц итков). Делим 18 десятков на 3. Получим 6 десятков, или 60. щишем: 18 дес.:3=6 дес. =60, 180:3=60». Процесс деления;но показать и на палочках, и на брусках. Сначала учащиеся г. подробную запись, заменяя единицы десятками, затем запись _!ртывается. От учащихся требуется лишь устное объяснение. [яконец, свертывается и объяснение. Учащиеся записывают лишь т. Такое же объяснение проводится и при знакомстве с умножением и делением круглых десятков на однозначное число. Решети- подобных случаев сводится к внетабличному умножению и |и чению. Поэтому приведем лишь подробную запись решения:
3-3= 9 30-3= 90 300-3=900 8:4= 2 80:4= 20 800:4=200 120-4=? 12 дес. -4 дес.=48 дес.=480 120-4=480 480:4=? 48 дес.:4= 12 дес.= 120 480:4=120
Действия умножения и деления надо сопоставлять, проверяя каждое обратным действием: 400x2=800, 800:2=400. 2. Умножение и деление круглых десятков на однозначное число. а) Рассматриваются случаи умножения и деления круглых де б) Рассматриваются случаи, которые сводятся к внетабличному| Перед умножением и делением круглых десятков с учащимися необходимо повторить табличное и внетабличное умножение и деление (4-6, 24-2, 36:6, 36:3), а также определение общего количества десятков в числе («Сколько всего десятков в числе 120, 180, 360, 720?») и количества единиц в десятках («7 десятков. Сколько это единиц?»; «Сколько единиц з 2 десятках? 5 десятках? 10 десятках? 52 десятках?»). При объяснении проводятся следующие рассуждения: «60-3=? 60 — это 6 десятков, 6 дес.-3=18 дес. 18 десятков — это 180, значит, 60-3=180». Можно показать учащимся на брусках арифметического ящика, пучках палочек, связанных десятками, что результат будет тот же. Для этого учитель берет по 6 брусков 3 раза. Получает 18 брусков, или 18 десятков. Это число 180. При знакомстве с делением ход рассуждения аналогичен: «180:3=? Узнаем, сколько десятков содержится в числе 180 (18 200 123-3=?_________ 123 = 100+20+3 100-3=300 20-3= 60 3-3= 9 300+60+9=369 123=100+20+3 100-3=300 20-3= 60 3-3= 9 300+60+9=369 486:2 =?________ 486=400+80+6 400:2=200 80:2= 40 6:2= 3 200+40+3=243 100-3=300 20-3= 60 3-3= 9 300+60+9=369 4. Умножение 10 и 100, умножение на 10 и 100. В пределах 1000 рассматривается умножение однозначного двузначного числа на 10 и 100 и соответствующие случаи дел* ния: 8-100=800 8- 10= 80 80- 10=800
Умножение числа 10 учитель объясняет, опираясь на понятии умножения как сложения равных чисел. 10-3=10+10+10=30 10-3=30 10-5=10+10+10+10+10=50 10-5=50 Рассматривается еще несколько примеров. Сравниваются отве ты. Учащиеся убеждаются, что при умножении числа 10 на любой множитель к нему справа приписывается нуль. Затем решаются примеры на умножение однозначного числа ня 10. Решение примера 3x10=? также производится приемом заме ны умножения сложением одинаковых слагаемых: 3-10=3+3+3...+3=30 10 раз 1 Можно использовать и переместительный закон умножения: \ 10-3=30 3-10=30 Рассмотрев ряд таких примеров, сопоставив произведения и первый множитель, учащиеся приходят к выводу: чтобы умножить число на 10, нужно к первому множителю приписать справа один нуль. Это правило умножения числа на 10 распространяется и на умножение двузначных чисел (25x10=250). При умножении на 100 множитель 100 рассматривается как произведение двух чисел: 100=10* 10. Учащиеся практически знакомятся с использованием сочетательного закона умножения, хотя этот закон они не называют и не формулируют. Учитель объясняет: «Чтобы число умножить на 100, его нужно умножить сначала на 10,.. потом произведение умножить еще раз на 10, так как 100=10.10». Затем запись дается в строчку: 6-100=6-10 • 10=600. Решается также подробно еще несколько примеров. При реше-«и каждого примера учитель просит сравнивать произведение и!рвый множитель. Учащиеся самостоятельно приходят к выводу: •обы умножить число на 100, к нему нужно приписать справа а нуля. Умножение 100 на однозначное число выполняется путем ис- пьзования переместительного закона умножения: 100x5=? 5x100=500 5. Целение на 10 и 100. Деление на 10, как показывает опыт, лучше усваивается учащимися при сопоставлении с действием умножения. Деление на 10 рассматривается как деление по содержанию: 2-10=20, отсюда 20:10=2. 20:10=2 сопровождается вопросом: «Сколько раз в двух десятках содержится один десяток?» Как и в умножении, решается несколько примеров на деление на 10, сравниваются частное и делимое. Учащиеся убеждаются, [• что в частном получается делимое без одного нуля, и делают вывод: чтобы разделить число на 10, в нем надо отбросить нуль справа. Этот вывод распространяется и на деление круглых сотен и десятков на 10 (400:10=40, 250:10=25). Аналогично учащиеся знакомятся с делением на 100: 400:100=? 4-100=400 400:100=4 Деление на 100 можно объяснить и последовательным делением на 10 и еще раз на 10:
400:100=400:10:10=4 Деление на 10 и 100 учащиеся учатся производить как без остатка, так и с остатком: 40:10=4, 45:10=4 (ост. 5). Следует указать, что при делении числа на 10 (100) опредв ется, сколько всего десятков (сотен) содержится в нем. Учите, необходимо помнить о том, что умственно отсталые школьникь трудом дифференцируют сходные и противоположные понят|| Поэтому, когда ученики познакомились с правилами умножена деления числа на 10, 100, необходимо рассмотреть случаи, | которых эти правила используются одновременно, попросить щихся сравнить их, найти сходство и различие:
40: 10 400: 10 400:100 Необходимо также сравнить умножение на 10 и 100 с умнонв Закреплению действия способствует также кратное сравнение! чисел (во сколько раз одно число больше или меньше другого).; Например, даются такие задания: «Во сколько раз 2 меньше, чем/ 20, 200?»; «Во сколько раз 300 больше, чем 3, 10, 100?» Пример 300:3=100 можно прочитать так: «Число 300 больше, чем 3, в 100 раз». Или: «Число 3 меньше, чем 300, в 100 раз». «Какими действиями можно сравнить числа 400 и 10?» — спрашивает учитель. Ученики отвечают: «Сравнить эти числа можно действиями деления и вычитания: 400:10, 400—10». Учащиеся учатся самостоятельно ставить вопросы: «На сколько число 400 больше 10?»; «Во сколько раз 400 больше 10?» II. Письменное умножение и деление в пределах 1000.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|