Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Деление многозначного числа на однозначное




При делении необходимо примеры подбирать так, чтобы выс­ший разряд делимого делился на делитель (был больше его). На таких примерах удобнее всего закрепить предварительную прикид­ку числа цифр в частном, о которой учащиеся уже получили представление при делении чисел в пределах 1000. 232


I


Например, берем 5 тысяч и делим на 4, в частном получим

четырехзначное число.

 

5548 "4  
 
15 "12

Деля 5:4, в частном берем по 1, проверяем: 1x4=4. Из 5 вычитаем 4, остаток 1. Сносим сотни. Делим 15 сотен на 4. Берем по 3 и т. д. Частное 1387. Делим проверку: 1387x4.

34 "32
28 "28

Затем подбираются примеры, в которых высший разряд делимого не делится нацело на делитель 12 575:5 (один десяток тысяч не делится на 5). Тогда на 5 делим 12 единиц тысяч. В частном будет четырехзначное число. Ставим 4 точки в частном, начинаем делить 12 ед. тысяч на 5 и т. д. Необходимо работать в этот период над закреплением алгорит­ма деления. Чтобы ученики лучше запомнили последовательность рассуждений при выполнении этого действия, полезно использо­вать схему, в которой это подробно излагается: 1) прочитай и запиши пример; 2) выдели первое неполное делимое; 3) определи количество цифр в частном и поставь на их месте точки; 4) раз­дели неполное делимое и запиши полученное число в частное; 5) умножь это число на делитель, чтобы узнать, какое число ты разделил; 6) вычти, чтобы узнать, сколько еще единиц осталось разделить; остаток должен быть меньше делителя; 7) остаток вы­рази в единицах низшего разряда и прибавь к нему единицы такого же разряда делимого; 8) деление так же продолжай до полного решения примера; 9) сопоставь частное и делимое; част­ное должно быть меньше делимого; 10) проверь ответ действием

умножения.

Этой схемой учитель пользуется при объяснении деления, учит ею пользоваться учащихся. Сначала учащиеся читают по схеме каждое задание и отвечают. Затем задание читается ими про себя, а ответ произносится вслух. Наконец, учащиеся пользуются этой схемой самостоятельно, учитель может помогать учащимся лишь наводящими вопросами.

Особое внимание следует уделить таким случаям деления, в которых нули получаются в середине или на конце частного. Например: «Разделим 3840 на 4. 3 тысячи на 4 не делятся. Берем 38 сотен и делим их на 4. В частном получится трехзначное число. Поставим в частном 3 точки. 38 сотен разделим на 4, получим по 9 сотен. Умножим 9 сотен на 4, получим 36 сотен. От вычитания получим 2 сотни — это 20 десятков, 20 десятков да


еще 4 десятка, всего 24 десятка. Делим 24 десятка на 4. Возьмем по 6, умножим 6 на 4, получим 24. О единиц разделим на 4. получим 0.


Т046~

355"

Разделим 6276 на 6; 6 единиц тысяч будем делить на 6. Возьмем по 1. В частном получится четырехзначное число. Ставим 4 точки 1 ед. тыс. умножим на 6, получим 6. Проверим вычитанием, все ли тысячи разделились. Остатка нет. Делим 2 сотни на 6, 2 сотни не де лятся на 6, поэтому на месте сотен пишем в частном 0. 27 десятком делим на 6. Возьмем по 4». И т. д. При делении многозначного числл на однозначное рассматриваются и случаи деления с остатком, например 2487:7. Важно постоянно обращать внимание учащихся на то, что оста ток должен быть меньше делителя.

2 (ост.)

Умножение и деление на 10, 100, 1000

В концентре 1000 были рассмотрены случаи умножения на 10 и 100. Это же правило распространяется и на умножение, и на деление многозначных чисел на 10 и 100.

Однако первоначально следует повторить с учащимися те слу­чаи умножения 1000 на однозначное число, которые они рассмат­ривали еще при изучении нумерации:

1000x2=1000+1000=2000

или

1 тыс.х2=2 тыс.=2000 1000x5=1 тыс. х 5=5 тыс.=5000

Рассматривается еще несколько случаев умножения 1000 на числа. После этого учащиеся, сравнивая произведение, множите­ли, смогут самостоятельно сделать вывод:

Если один множитель — число 1000, то в произведении ко второму множителю надо приписать три нуля. 234


Используя знание переместительного закона умножения, уча­щиеся смогут решить примеры вида 3x1000.

Деление на 1000, так же как и деление на 10, 100, как пока-м.шает опыт, лучше усваивается как деление по содержанию. 11оэтому сначала решается задача: «Нарубили 8000 кг капусты. Для хранения ее нужно разложить в чаны. В каждый чан войдет ни 1000 кг капусты. Сколько потребуется чанов?» Решение. н()00 кг: 1000 кг. Если 8 тыс. разделить по 1 тыс. (8 тыс.:1 тыс.), и, получим 8. 8000 кг: 1000 кг=8 (чанов).

Рассматривается еще несколько аналогичных примеров. В ре-'ультате учащиеся делают вывод по аналогии с делением на 10 и

100.

Если делитель равен тысяче, то в делимом надо отбросить три нуля и полученное число записать в частное.

Примеры на деление на 10, 100, 1000 записывается в строчку (42 000:1000=42) и решаются устно. Решаются примеры на деле­ние как без остатка, так и с остатком: 80: 10=8 800: 100=8 8000: 1000=8

85: 10=8 (ост. 5)

807: 100=8 (ост. 7)

8507: 1000=8 (ост. 507)

870: 100=8 (ост. 70)

Учитель постоянно должен напоминать учащимся, что остаток должен быть меньше делителя. Действие деления как без остатка, так и с остатком учащиеся должны учиться проверять. Например:

3800:100=38.

Проверка. 38х 100=3800. 7518:1000=7 (ост. 518). Проверка. 7x1000+518=7518.

Познакомившись с умножением и делением на единицу с нуля­ми, учащиеся с трудом дифференцируют правила умножения и деления на 10, 100, 1000, смешивают эти правила, не могут вспомнить, когда нужно нули приписывать, а когда их отбрасы­вать. Это происходит особенно часто при умножении в случае, когда в первом множителе есть нули. Например: 3800x10. В произведении ученик может написать число 380. При делении


3856:10 в частное ученик переписывает делимое и нуль сщ т. е. получает 38 560.

Такие ошибки возникают, как правило, при самостоятельно»! выполнении действий, когда некому наводящим вопросом актуали» зировать вовремя имеющиеся знания, направить внимание учени«ка на анализ выполняемой операции с числами.

Предупреждению возможных ошибок и лучшей дифференциа­ции действий умножения и деления на 10, 100, 1000 служит чередование примеров на умножение и деление, их сопоставле­ние, сравнение ответов (при умножении число увеличивается, при делении уменьшается), способов выполнения действий, а также решение сложных примеров, в которых имеются оба действия: 4700:100x1000.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...