Законы Кирхгофа в операторной форме
Первый закон Кирхгофа: алгебраическая сумма изображений токов, сходящихся в узле, равна нулю . Второй закон Кирхгофа: алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура . При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде . В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 - ; 2 - . В первом случае в соответствии с законом Ома . Тогда и . Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов: откуда ; и .
Переход от изображений к оригиналам Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами: 1. Посредством обратного преобразования Лапласа , которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как: . На практике этот способ применяется редко. 2. По таблицам соответствия между оригиналами и изображениями В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала. Например, для изображения тока в цепи на рис. 5 можно записать
. Тогда в соответствии с данными табл. 1 , что соответствует известному результату. 3. С использованием формулы разложения Пусть изображение искомой переменной определяется отношением двух полиномов , где . Это выражение может быть представлено в виде суммы простых дробей
где - к-й корень уравнения . Для определения коэффициентов умножим левую и правую части соотношения (3) на (): . При . Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем . Таким образом, . Поскольку отношение есть постоянный коэффициент, то учитывая, что , окончательно получаем
Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е. , то уравнение (4) сводится к виду . В заключение раздела отметим, что для нахождения начального и конечного значений оригинала можно использовать предельные соотношения которые также могут служить для оценки правильности полученного изображения.
Литература
Контрольные вопросы
Ответ: .
Ответ: .
Лекция N 28
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|