Некоторые важные замечания к формуле разложения
.
.
Последовательность расчета переходных процессов 1. Определение независимых начальных условий путем расчета докоммутационного режима работы цепи. 2. Составление операторной схемы замещения цепи (для простых цепей с нулевыми начальными условиями этот этап может быть опущен). 3. Запись уравнений по законам Кирхгофа или другим методам расчета линейных цепей в операторной форме с учетом начальных условий. 4. Решение полученных уравнений относительно изображений искомых величин.
5. Определение оригиналов (с помощью формулы разложения или таблиц соответствия оригиналов и изображений) по найденным изображениям. В качестве примера использования операторного метода определим ток через катушку индуктивности в цепи на рис. 1. С учетом нулевого начального условия операторное изображение этого тока . Для нахождения оригинала воспользуемся формулой разложения при нулевом корне
где , . Корень уравнения . Тогда и . Подставляя найденные значения слагаемых формулы разложения в (1), получим . Воспользовавшись предельными соотношениями, определим и :
Формулы включения Формулу разложения можно использовать для расчета переходных процессов при нулевых и ненулевых начальных условиях. Если начальные условия нулевые, то при подключении цепи к источнику постоянного, экспоненциального или синусоидального напряжения для расчета переходных процессов удобно использовать формулы включения, вытекающие из формулы разложения.
где - входное операторное сопротивление двухполюсника при определении тока в ветви с ключом (при расчете тока в произвольной ветви это операторное сопротивление, определяющее ток в ней по закону Ома); - к-й корень уравнения .
.
. В качестве примера использования формулы включения рассчитаем ток в цепи на рис. 2, если в момент времени t=0 она подсоединяется к источнику с напряжением ; ; . В соответствии с заданной формой напряжения источника для решения следует воспользоваться формулой (2). В ней . Тогда корень уравнения . Производная и . В результате .
Сведение расчета переходного процесса к расчету Используя принцип наложения, расчет цепи с ненулевыми начальными условиями можно свести к расчету схемы с нулевыми начальными условиями. Последнюю цепь, содержащую пассивные элементы, можно затем с помощью преобразований последовательно-параллельных соединений и треугольника в звезду и наоборот свести к виду, позволяющему определить искомый ток по закону Ома с использованием формул включения.
Методику сведения цепи к нулевым начальным условиям иллюстрирует рис. 3, на котором исходная схема на рис. 3,а заменяется эквивалентной ей схемой на рис. 3,б, где . Последняя в соответствии с принципом наложения раскладывается на две схемы; при этом в схеме на рис. 3,в составляющая общего тока равна нулю. Таким образом, полный ток равен составляющей тока в цепи на рис. 3,г, где исходный активный двухполюсник АД заменен пассивным ПД, т.е. схема сведена к нулевым начальным условиям. Следует отметить, что если определяется ток в ветви с ключом, то достаточно рассчитать схему на рис. 3,г. При расчете тока в какой-либо другой ветви АД в соответствии с вышесказанным он будет складываться из тока в этой ветви до коммутации и тока в ней, определяемого подключением ЭДС к пассивному двухполюснику. Аналогично можно показать, что отключение ветви, не содержащей индуктивных элементов, при расчете можно имитировать включением в нее источника тока, величина которого равна току в ветви до коммутации, и действующему навстречу ему.
Переходная проводимость При рассмотрении метода наложения было показано, что ток в любой ветви схемы может быть представлен в виде , где - собственная (к=m) или взаимная проводимость. Это соотношение, трансформированное в уравнение
будет иметь силу и в переходном режиме, т.е. когда замыкание ключа в m-й ветви подключает к цепи находящийся в этой ветви источник постоянного напряжения . При этом является функцией времени и называется переходной проводимостью. В соответствии с (3) переходная проводимость численно равна току в ветви при подключении цепи к постоянному напряжению .
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|