Материалы для высоких частот и СВЧ
⇐ ПредыдущаяСтр 3 из 3 Ферриты для устройств СВЧ. Диапазон СВЧ соответствует длинам волн от 1 м до I мм. В аппаратуре и приборах, где используются электромагнитные волны диапазона СВЧ. необходимо управлять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебании, поворачивать плоскость поляризации волны, частично или полностью поглощать мощность потока. Электромагнитные волны могут распространяться в пространстве, заполненном диэлектриком, а от металлов они почти полностью отражаются. Поэтому металлические поверхности используют для направления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волноводам, представляющим собой полые или частично заполненные твердыми материалами металлические трубы. В качестве твердых материалов для управления потоком энергии в волноводах используют ферриты СВЧ и некоторые немагнитные активные диэлектрики. Магнитными характеристиками первых можно управлять с помощью внешнего магнитного поля, электрическими свойствами вторых - за счет внешнего электрического поля. Практическое применение ферритов СВЧ основано на: а) магнитооптическом эффекте Фарадея; б) эффекте ферромагнитного резонанса; в) изменении внешним магнитным полем значения магнитной проницаемости феррита. Магнитооптический эффект Фарадеязаключается в повороте плоскости поляризации высокочастотных колебаний в намагниченном за счет внешнего поля феррите. При этом могут быть получены различные углы поворота плоскости поляризации, а следовательно, и коммутирование энергии в разные каналы. Ферромагнитный резонанснаблюдается при совпадении частоты внешнего возбуждающего поля с собственной частотой прецессии спинов электронов. Собственная частота прецессии зависит от магнитного состояния образца, а потому ее можно изменять с помощью постоянного подмагничивающего (управляющего) поля Н. При резонансе резко возрастает поглощение энергии электромагнитной волны, распространяющейся в волноводе в обратном направлении; для волны прямого направления поглощение оказывается значительно меньшим. В результате получается высокочастотный вентиль. Рассмотренный эффект наиболее сильно проявляется в том случае, когда напряженности переменного возбуждающего и постоянного подмагничивающего полей взаимно перпендикулярны.
Если частоту внешнего поля поддерживать постоянной, а изменять напряженность подмагничивающего поля Н, то вентильные свойства феррита будут проявляться в довольно узком интервале напряженностей постоянного поля Н, называемом шириной линии ферромагнитного резонанса. Чем меньше значение Н, тем сильнее поглощение электромагнитной энергии, что благоприятно сказывается на характеристиках ряда СВЧ-устройств (антенные переключатели и циркуля-торы, служащие для распределения энергии между отдельными волноводами; фазовращатели; фильтры; модуляторы, ограничители мощности и др.). Помимо достижения узкой линии резонанса к ферритам СВЧ предъявляют ряд специфических требований. Основными из них являются: ) высокая чувствительность материала к управляющему полю (возможность управления относительно слабым внешним полем); ) высокое удельное объемное сопротивление и возможно меньший тангенс угла диэлектрических потерь, а также возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите; ) температурная стабильность свойств и возможно более высокое значение точки Кюри. В отдельных случаях к ферриту предъявляют и другие требования, которые могут быть даже противоречивыми. Большинство требований удовлетворяется при использовании магний-марганцевых ферритов с большим содержанием окиси магния. Для некоторых целей применяют литий-цинковые и никель-цинковые ферриты и ферриты сложного состава (полиферриты).
Конфигурация и размеры ферритового изделия, с одной стороны, определяются принципом действия прибора, а с другой, зависят от свойств самого материала. В различных приборах СВЧ применяемые ферритовые вкладыши имеют форму прямоугольной пластины, равностороннего треугольника, кольца, диска или сферы. При определенной геометрии вкладыша обеспечивается наилучшее согласование его с волноводом, т.е. получается минимальное отражение электромагнитной волны от феррита. Для изготовления вкладышей используются как поликристаллические материалы, так и монокристаллы ферритов. Последние характеризуются более узкой шириной линии ферромагнитного резонанса. Особое место среди материалов для СВЧ занимают феррогранаты иттрия с частичным замещением ионов иттрия и железа другими ионами. Они характеризуются весьма низкими диэлектрическими и магнитными потерями, слабой анизотропией, наиболее узкой резонансной кривой. Среди ферритов, применяемых в низкочастотной части диапазона СВЧ, феррогранат иттрия является наиболее распространенным. Монокристаллы феррогранатов обычно получают кристаллизацией из раствора-расплава с использованием оксифторида свинца в качестве растворителя. Ферриты
Ферриты представляют собой оксидные магнитные материалы, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом. Большое удельное сопротивление р. превышающее р железа в I03-1013 раз, а следовательно, и относительно незначительные потери энергии в области повышенных и высоких частот наряду с достаточно высокими магнитными свойствами обеспечивают ферритам широкое применение в радиоэлектронике. Получение ферритов. Ферриты получают в виде керамики и монокристаллов. Благодаря невысокой стоимости и относительной простоте технологического цикла керамические материалы занимают ведущее место среди высокочастотных магнетиков.
При изготовлении ферритовой керамикив качестве исходного сырья наиболее часто используют окислы соответствующих металлов. Общая технологическая схема производства ферритов во многом аналогична схеме производства радиокерамики. Однако при получении материалов с заданными магнитными свойствами предъявляются более жесткие требования к исходному сырью в отношении его химической чистоты, степени дисперсности и химической активности. В отличие от электрорадиокерамики ферритовая керамика совершенно не содержит стекловидной фазы; все процессы массопереноса при синтезе соединения и спекания изделий происходят лишь за счет диффузии в твердой фазе. Исходные окислы подвергают тщательному измельчению и перемешиванию в шаровых или вибрационных мельницах тонкого помола, а затем после брикетирования или гранулирования массы осуществляют предварительный обжиг с целью ферритизации продукта, т.е. образования феррита из окислов. Ферритизованный продукт вновь измельчают и полученный таким образом ферритовый порошок идет на формовку изделий. Предварительно его пластифицируют, причем в качестве пластификатора обычно используют водный раствор поливинилового спирта. Формование изделий наиболее часто осуществляют методом прессования в стальных пресс-формах. Высокой производительностью формовки отличается также метод горячего литья под давлением. В этом случае в качестве пластифицирующего и связующего веществ применяют парафин. Отформованные изделия подвергают спеканию при температуре 1100-1400°С в контролируемой газовой среде. Контроль за составом газовой среды особенно необходим на стадии охлаждения, чтобы предотвратить выделение побочных фаз. Наибольшей чувствительностью к изменению давления кислорода характеризуются ферриты марганца и твердые растворы на их основе. В процессе спекания завершаются химические реакции в твердой фазе, устраняется пористость, фиксируется форма изделий. За счет процесса рекристаллизации материал приобретает определенную зеренную структуру, которая существенно влияет на магнитные свойства керамики. Ферриты являются твердыми и хрупкими материалами, не позволяющими производить обработку резанием и допускающими только шлифовку и полировку. Для этих видов механической обработки широко используют порошки карбида кремния и абразивные инструменты из синтетических алмазов.
магнитомягкий материал сильный ток Задача
На поверхности диэлектрика параллельно друг другу расположены два ножевых электрода. Расстояние между электродами b=2 мм, их ширина h=10 мм. Чему равно удельное поверхностное сопротивление диэлектрика, если сопротивление между электродами 5 МОм? Данная задача решается по формуле ρs=Rs*h/b. Переведем данные в систему СИ. b=2 мм=2*10-6 м - расстояние между электродами, h=10 мм=10-5 м - ширина электродов, Rs=5*106 Ом - сопротивление между электродами. Подставим данные в формулу.
ρs=5*106 10-5 /2*10-6 =25 МОм
Ответ: ρs=25 МОм
Список используемой литературы
1. Преображенский А.А. - Магнитные материалы. (1965 г.) . Пасынков В.В. - Материалы электронной техники. Издание 3. (2001 г.) . http://maxburtsev.ru/radio2all/radiomat/lect/lect08. htm
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|