Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Поражающие факторы ядерного оружия Ударная волна




 

Ударная волна является основным поражающим фактором ядер­ного взрыва. Большинство разрушений и повреждений зданий, со­оружений и оборудования объектов, а также поражений людей обусловлено, как правило, воздействием ударной волны.

В зависимости от того, в какой среде распространяется волна, ее называют соответственно воздушной ударной волной, ударной волной в воде и сейсмовзрывной волной в грунте.

Воздушная ударная волна представляет собой зону сильного сжатия воздуха, распространяющуюся во все стороны от центра взрыва со сверхзвуковой скоростью. Передняя граница волны на­зывается фронтом.

Ударная волна имеет фазу сжатия и фазу разряжения. В фазе сжатия ударной волны давление выше атмосферного, а в фазе раз­ряжения - ниже. Наибольшее давление воздуха наблюдается на внешней границе фазы сжатия, т.е. во фронте волны.

На рис. 1.18 показано изменение давления воздуха в любой точ­ке пространства при прохождении через нее ударной волны. Как только ударная волна спустя некоторое время Θ после взрыва дос­тигает определенной точки пространства, мгновенно в этой точке повышаются давление и температура, воздух начинает распрост­раняться в направлении ударной волны. Через некоторое время давление снижается и через время τ+ после подхода фронта удар­ной волны становится равным атмосферному. Дальнейшее умень­шение давления приводит к разряжению. В это время воздух начи­нает двигаться в сторону взрыва. Как только действие пониженного давления закончится, прекратится и движение воздуха.

Основными параметрами ударной волны, определяющими ее поражающее действие, являются: избыточное давление ΔРф, ско­ростной напор ΔРск и время действия ударной волны tув.

Избыточное давление во фронте ударной волны ΔРф - это разни­ца между максимальным давлением воздуха во фронте ударной вол­ны Рф и атмосферным давлением Р0, которая является основной ха­рактеристикой воздушной ударной волны, т.к. определяет скачок давления, который происходит практически мгновенно при подхо­де волны к месту регистрации давления. Единицей физической ве­личины ΔРф является паскаль (Па) или кгс/см2 (1 кгс/см2 ≈ 105 Па).

Скоростной напор ΔРск - это динамические нагрузки, создавае­мые потоками воздуха. Скоростной напор зависит от плотности воздушных масс и связан с избыточным давлением ударной вол­ны. Разрушительное действие скоростного напора заметно сказы­вается в местах с избыточным давлением более 50 кПа, где ско­рость перемещения воздуха более 100 м/с.

 

Рис. 1.18. Изменение давления в точке пространства

при прохождении через нее воздушной ударной волны

 

Время действия ударной волны tув - это время действия избы­точного давления, величина которого зависит от мощности взры­ва и измеряется в секундах.

Различные разрушения зданий и сооружений, вызываемые дей­ствием, воздушной ударной волны, определяются, в основном, зна­чениями ΔРф и tув. Степень воздействия избыточного давления и с короеда ого напора в повреждении или разрушении объектов за­висит от размеров, конструкции объекта и степени его связи с зем­ной поверхностью.

Поражения людей вызываются как прямым действием ударной волны, так и косвенным (летящими обломками зданий, деревьями и др.). Характер и степень поражения людей зависят от избыточ­ного давления в подошедшей волне, положения в этот момент че­ловека и степени его защиты. Полученные при этом травмы при­нято делить на легкие (ΔРф=0,2-0,4 кгс/см2), средние (ΔРф=0,5 кгс/см2) и тяжелые (ΔРф >0,5 кгс/см2). При давлении свыше 1 кгс/см2 трав­мы могут быть крайне тяжелыми и смертельными.

 

Световое излучение

 

Световое излучение ядерного взрыва представляет собой элект­ромагнитное излучение оптического диапазона в видимой, ульт­рафиолетовой и инфракрасной областях спектра.

Энергия светового излучения поглощается поверхностями ос­вещаемых тел, которые при этом нагреваются. Температура нагрева зависит от многих факторов и может приводить к обугливанию, оплавлению и воспламенению поверхностей объектов.

Источником светового излучения является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров материалов ядерного боеприпаса и воздуха, а при наземных взры­вах - и испарившегося грунта.

На долю светового излучения приходится 30-40 % всей энергии ядерного взрыва. На открытой местности световое излучение об­ладает наибольшим радиусом действия по сравнению с ударной волной и приникающей радиацией.

Основным параметром, характеризующим поражающее дей­ствие светового излучения, является световой импульс - количе­ство световой энергии, падающей на 1 см2 освещаемой поверхнос­ти, перпендикулярной к направлению излучения, за все время свечения области взрыва (огненного шара). Световой импульс из­меряется в Дж/м2 или в кал/см2 (внесистемная единица), 1 кал/см2= 42 Дж/м2. Продолжительность светового импульса tc зависит от мощности боеприпаса и определяется по формуле (1.5):

, с, (1.5)

где: q-мощность боеприпаса, кт.

Световой импульс в данной точке прямо пропорционален мощ­ности ядерного взрыва и обратно пропорционален квадрату рас­стояния до центра взрыва. На световой импульс влияют также вид ядерного взрыва, прозрачность атмосферы и другие факторы.

При наземных взрывах световой импульс на поверхности земли при тех же расстояниях примерно на 40 % меньше, чем при воздуш­ных взрывах такой же мощности. Объясняется это тем, что в гори­зонтальном направлении излучается не вся поверхность сферы ог­ненного шара, а лишь полусферы, хотя и большего радиуса.

Если земная поверхность хорошо отражает свет (снежный покров, асфальт и т.д.), то суммарный световой импульс (прямой и отражен­ный) при воздушном взрыве может быть больше прямого в 1,5-2 раза.

Поражение людей световым излучением выражается в появле­нии ожогов различных степеней открытых и защищенных одеж­дой участков кожи, а также в поражении глаз. Ожоги могут возни­кать как непосредственно от излучения, так и от пламени, возникшего при возгорании от светового излучения различных материалов.

Световое излучение в первую очередь воздействует на откры­тые участки тела (кисти рук, шею, лицо) и на глаза. Различают че­тыре степени ожогов: первой степени (поверхностное поражение кожи, ее покраснение); второй степени (образование пузырей); тре­тьей степени (омертвение глубоких слоев кожи); четвертой степени (обугливание кожи, подкожной клетчатки, а иногда и более глу­боких тканей).

Степень воздействия светового излучения на здания, сооруже­ния, технику и т.д. зависит от свойств их конструктивных материа­лов. Оплавление, обугливание и воспламенение материалов могут привести к возникновению пожаров.

 

Проникающая радиация

 

Проникающая радиация ядерного взрыва представляет собой поток гамма-излучения и нейтронов.

Гамма-излучение и нейтронное излучение различны по своим физическим свойствам, но распространяются в воздухе одинаково - во все стороны на расстояния 2,5-3 км.

Проходя через биологическую ткань, гамма-кванты и нейтро­ны ионизируют атомы и молекулы, входящие в состав живых кле­ток, результатом чего является нарушение нормального обмена ве­ществ и изменение характера жизнедеятельности клеток, отдельных организмов и систем организма, что приводит к возникновению такого заболевания как лучевая болезнь.

Источником проникающей радиации являются ядерные реак­ции деления и синтеза, протекающие в боеприпасах в момент взры­ва, а также радиоактивный распад осколков деления.

Гамма-излучение представляет собой электромагнитное излуче­ние, испускаемое ядрами атомов при радиоактивных превращени­ях. По своей природе гамма-излучение подобно рентгеновскому, но обладает значительно большей энергией (меньшей длиной вол­ны), испускается отдельными порциями (квантами) и распростра­няется со скоростью 300000 км/с.

Нейтронное излучение представляет собой поток нейтронов, распространяющийся со скоростью до 20000 км/с. Так как нейтро­ны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. Нейтронное излучение оказывает сильное поражающее воздействие при внешнем облучении.

Время действия проникающей радиации при взрыве зарядов деления и комбинированных зарядов не превышает нескольких се­кунд и определяется временем подъема облака взрыва на такую высоту, при которой гамма-излучение поглощается толщей возду­ха и практически не достигает поверхности земли.

Поражающее действие проникающей радиации характеризует­ся дозой излучения, т.е. количеством энергии ионизирующих излу­чений, поглощенной единицей массы облучаемой среды. Различа­ют экспозиционную дозу и поглощенную дозу.

Экспозиционная доза характеризует потенциальную опасность воздействия ионизирующих излучений при общем и равномерном облучении тела человека. Ранее экспозиционная доза измерялась внесистемными единицами - рентгенами (Р). Один рентген - это та­кая доза рентгеновского или гамма-излучения, которая создает в 1 см3 воздуха 2,1∙109 пар ионов. В системе единиц СИ экспозиционная доза измеряется в кулонах на килограмм (1 Р = 2,58∙10-4 Кл/кг).

Поглощенная доза более точно определяет воздействие ионизи­рующих излучений на биологические ткани организма, имеющие различный атомный состав и плотность. Измеряется поглощенная доза в радах (1 рад = 0,001 Дж/кг = 100 эрг/г поглощенной тканями энергии). Единицей измерения поглощенной дозы в системе СИ является грей (1 Гр = 1 Дж/кг = 100 рад).

Поражающее действие нейтронов пропорционально дозе, изме­ряемой в радах. Нейтроны и гамма-излучение действуют на любой объект практически одновременно, поэтому поражающее действие проникающей радиации определяется суммированием доз гамма-излучения и нейтронов (1.6):

(1.6)

Доза излучения зависит от типа ядерного взрыва, мощности и вида взрыва, а также от расстояния до центра взрыва. Проникаю­щая радиация является одним из основных поражающих факторов при взрывах нейтронных боеприпасов и боеприпасов сверхмалой и малой мощности.

Поражающее воздействие проникающей радиации на людей зависит от дозы излучения и времени, прошедшего после взрыва. В зависимости от дозы излучения различают четыре степени луче­вой болезни: I степень (легкая) возникает при суммарной дозе из­лучения 150-250 рад; II степень (средняя) – 250-400 рад; III степень (тяжелая) – 400-700 рад; IV степень – свыше 700 рад.

 

Радиоактивное заражение

 

Радиоактивное заражение местности, приземного слоя атмос­феры, воздушного пространства, воды и других объектов возника­ет в результате выпадения радиоактивных веществ из облака ядер­ного взрыва.

Особенность радиоактивного заражения, как поражающего фак­тора, определяется тем, что высокие уровни радиации могут на­блюдаться не только вблизи места взрыва, но и на большом удале­нии от него, а также опасностью радиоактивного заражения в течение нескольких суток и даже недель после взрыва.

Источниками радиоактивного заражения при ядерном взрыве являются: продукты (осколки) деления ядерных взрывчатых ве­ществ; радиоактивные изотопы (радионуклиды), образующиеся в грунте и других материалах под воздействием нейтронов; наведен­ная активность; неразделившаяся часть ядерного заряда.

Каждый радиоизотоп (радионуклид) распадается со своей ско­тью. Для любого количества данного радионуклида характерно следующая закономерность: половина общего числа ядер атома распадается всегда за одинаковое время, называемое периодом полураспада (Т). Чем больше Т, тем дольше «живет» изотоп, создавая при этом ионизирующие излучения. Период полураспада для разных изотопов колеблется в широких пределах - от 8,05 суток - для иода-131, до 14 млрд. лет - для тория-232. На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

Причиной заражения местности в районе взрыва являются оседание осколков деления и образование наведенной активности; плотность заражения местности, уровни радиации на ней и дозы полного распада радиоактивных веществ на границах зон заражения убывают с удалением от центра взрыва. Радиус заражения иона взрыва не превышает 2 км.

Границы зон радиоактивного заражения с разной степенью опасности для людей можно характеризовать как мощностью дозы излучения на определенное время после взрыва, так и дозой до полного распада радиоактивных веществ.

По степени опасности зараженную местность по следу облака взрыва принято делить на следующие четыре зоны (рис. 1.19).

 

 

Рис. 1.19. Схема радиоактивного заражения местности

в районе взрыва и по следу движения облака

Зона А - умеренного заражения характеризуется дозой излуче­ния до полного распада радиоактивных веществ на внешней гра­нице зоны Д = 40 рад, на внутренней границе Д = 400 рад.

Зона Б - сильного заражения. Дозы излучения на границах рав­ны соответственно Д = 400 рад и Д = 1200 рад.

Зона В - опасного заражения характеризуется дозами излучения на границах Д = 1200 рад и Д = 4000 рад, а зона Г - чрезвычай­но опасного заражения - Д = 4000 рад и Д = 7000 рад.

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляют соответственно: 8, 80, 240, 800 рад/ч.

Характерной особенностью радиоактивного заражения являет­ся спад уровня радиации со временем вследствие распада радиоак­тивных веществ. Спад уровня радиации подчиняется определенной зависимости, которая определяется формулой (1.7):

Pt = P1∙t-1,2, (1.7)

где: Рt - уровень радиации на любое заданное время, Р/ч;

P1 - уровень радиации на один час после взрыва, Р/ч;

t - время, прошедшее после ядерного взрыва, ч.

Большая часть радиоактивных осадков, вызывающая радиоак­тивное заражение местности, выпадает из облака за 10...20 ч после ядерного взрыва. К этому моменту и заканчивается формирование радиоактивного следа облака. Однако на том или ином участке местности, над которым проходит радиоактивное облако, выпаде­ние радиоактивных осадков продолжается от нескольких минут до 2 ч и более.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...