Химизм водействия воды на материалы
⇐ ПредыдущаяСтр 2 из 2 В процессе водоподготовки и очистки самые различные материалы постоянно контактируют с водой. Это – материалы, применяемые для строительства гидротехнических сооружений и сооружений водопровода и канализации. Материалы трубопроводов, транспортирующих воду различного состава, материалы машин и механизмов, охлаждаемых водой и т.д. В практике водоснабжения и канализации широко применяются чугун, сталь и железобетон. Активное воздействие воды на эти материалы проявляется в коррозии металлов. Коррозией называется процесс разрушения поверхности металла в результате химического или электрохимического воздействия на нее окружающей среды. Химически чистая вода – очень слабый электролит. Электропроводность природных и сточных вод значительно выше, т.к. они содержат достаточно много разнообразных солей, диссоциирующих в воде на ионы. Электропроводность металлов объясняется наличием в кристаллической структуре свободных или очень подвижных электронов. При контакте металлической поверхности с водой заряженные частицы металла (катионы) могут переходить в раствор, а электроны остаются в металле. В результате водный слой, контактирующий с металлом, приобретает положительный заря, а оставшиеся в металле некомпенсированными электроны сообщают ему отрицательный заряд. Поскольку и металл и электролит являются сложными системами, содержащими электрические заряды, на границе (металл –раствор) возникает скачок электрического потенциала, который называют электродным потенциалом. Электрохимическая неоднородность границы (металл –электролит) приводит к тому, что электродный потенциал, возникающий на отдельных участках, оказывается различным. Это различие в электродных потенциалах на некоторых участках границы (металл –электролит) приводит к возникновению электрохимических пар (анодных и катодных участков), между которыми протекает коррозионный ток.
Электрохимическая коррозия протекает как два достаточно самостоятельных процесса: 1) анодный процесс, состоящий в переходе ионов металла в раствор; для железа он может быть представлен след. образом: [Fe2+ + 2e-] → Fe2+ + [ 2e- ] металл раствор металл 2) катодный процесс, заключающийся во взаимодействии избыточных электронов металла с каким-либо атомом или ионом, способным восстанавливаться; основными реакциями на катоде являются восстановление протона до газообразного водорода: 2Н+ + 2е- → Н + Н → Н и восстановление кислорода с образованием гидроксил-ионов ½ О2 + Н2О + 2е- → 2ОН- Ток между анодом и катодом протекает в результате движения электронов в металле и ионов в растворе в соответствии со знаком заряда. При электрохимической коррозии разрушение металла происходит только на анодных участках. Тогда как на катоде потерь металла не обнаруживается. Факторы, влияющие на интенсивность процесса коррозии На скорость и интенсивность коррозии оказывает влияние как характер обработки поверхности металла, так и состав и условия воздействия внешней среды. Грубо обработанная поверхность активно корродирует, тогда как шлифовка и полировка металла повышают устойчивость его против коррозии. Поверхность металла может стать пассивной в результате образования на ней защитной оксидной пленки. Пассивация наблюдается при контакте металла с сильными окислителями, в том числе с кислородом. Основными определяющими факторами коррозии в водной среде являются: 1. углекислое равновесие и концентрация растворенного кислорода; 2. концентрация солей в воде; 3. присутствие в воде микроорганизмов.
Углекислое равновесие Различные соединения углекислоты в воде находятся в состоянии динамического равновесия. Практическое значение имеет карбонатно-кальциевая система равновесий, которая обусловливает такие свойства воды, как стабильность и агрессивность: Са(НСО3)2 ↔ СаСО3 + СО2 + Н2О ↓ ↓ ↓ полусвязанная связанная свободная углекислота углекислота ↓ ↓ равновесная агрессивная углекислота углекислота В условиях равновения концентрация свободной углекислоты в воде точно соответствует тому ее количеству, которое необходимо для поддержания в растворе определенной концентрации гидрокарбоната кальция. Это равновесная углекислота. Если количество СО2 в точности отвечает равновесной концентрации, вода называется стабильной, в ней не происходит ни растворения, ни выпадения карбонатов. Если концентрация СО2 меньше равновесной, реакция происходит слева направо, в результате чего карбонат кальция – соединение малорастворимое – выделяется на поверхности металла, образуя пленку с выраженными защитными свойствами. Избыток СО2 сверх равновесной концентрации называется агрессивной углекислотой. Углекислотная агрессивность воды по отношению к металлам обусловлена понижением рН воды. Кроме того, защитная пленка карбоната кальция при контакте с агрессивной водой растворяется, что способствует развитию коррозии. Стабильность воды оценивается рядом способов, один из которых – определени6е разности величин рН исследуемой воды (рН0) и воды с равновесными концентрациями соединений углекислоты (рНs). Разность между этими величинами называется индексом насыщения: I = pH0 – pHs. Если I= 0, вода считается стабильной; при I> 0 вода способна выделять карбонат кальция; при I<0 вода обладает коррозионными свойствами. Концентрация солей в воде. Увеличение общего солесодержания повышает электропроводность воды и таким образом приводит к ускорению коррозионных процессов. Однако значительное повышение концентрации солей может привести к снижению скорости коррозии в результате уменьшения растворимости кислорода. Некоторые катионы и анионы, присутствующие в воде, играют роль стимуляторов коррозии. Например, хлорид-ионы могут замещать кислород в защитной оксидной пленке, что приводит к образованию в ней пор и облегчает начало коррозии. Сульфаты ускоряют коррозию непосредственно увеличивая электропроводность и косвенно способствуя развитию биологической коррозии. К числу стимуляторов коррозии относятся также ионы металлов с переменной степенью окисления., например Сu2+ → Cu+, Fe3+ → Fe2+. Они ускоряют реакцию на катоде, выполняя роль деполятора: Fe3+ + е- → Fe2+
Хроматы, силикаты, гидроксил-иоы, напротив, снижают интенсивность коррозионных процессов, способствуя образованию защитных пленок на металле. Роль микроорганизмов в коррозии металлов Многие виды бактерий являются активными коррозионными агентами. Наибольшее значение имеют группы бактерий, участвующих в превращениях железа и серы. Роль микроорганизмов в процессах сводится к ускорению деполяризации катода путем ферментативного переноса электронов, выделению коррозионных продуктов обмена, образованию пар дифференциальной аэрации. Поселяясь в трубах, бактерии образуют на них стенках слизистые скопления, обладающие высокой механической прочностью и поэтому не смываемые током воды. Прочность этих образований обусловлена волокнистой структурой оболочек железобактерий. Коррозия начинается с образования на внутренней поверхности трубы желтых или темно-коричневых налетов или каверн, состоящих из гидроксида трехвалентного железа. Участки труб под кавернами оказываются изолированными от воды, и доступ кислорода к ним затруднен. Т.о., развитие железобактерий приводит к образованию на поверхности трубы зон с различной степенью аэрации, что приводит к возникновению коррозионного тока. Участки под кавернами функционируют как аноды. Деятельность железобактерий на анодных участках приводит к окислению Fe2+ в Fe3+ и его гидролизу. Образование гидроксида трехвалентного железа сопровождается снижением рН до 5-6, т.е. созданием коррозионной среды. Сульфатредуцирующие бактерии- строгие анаэробы. Микробиологическая коррозия такого типа является вторичным процессом и развивается вслед за обычной электрохимической коррозией. При этом под слоем ржавчины – продукта коррозии – создаются благоприятных анаэробные условия для развития сульфатредуцирующих бактерий. Необходимым условием для начала процесса является наличие сульфатов. В природных и сточных водах они всегда есть. Сульфатредуцирующие бактерии часто развиваются под массой железобактерий, обеспечивающих им строго анаэробные условия. В этом случае выделяющийся при восстановлении сульфатов серрводород вступает во взаимодействие с гидроксидом трехвалентного железа – продуктом жизнедеятельности железобактерий:
3Н2S + 2Fe(OH)3 → 2FeS + S + 6H2O Защита металлических трубопроводов и конструкций от коррозии Основными способами защиты поверхности металла от коррозии являются нанесение на металлическую поверхность защитного слоя и электрохимическая защита. Для защиты трубопроводов обычно применяют первый способ. Наружную поверхность труб защищают от коррозии нанесением слоя каменноугольной смолы. Для внутренней поверхности чугунных труб применяют битумные или полимерные покрытия, которые наносятся при изготовлении труб на заводе. Предотвратить или замедлить коррозию можно путем предварительной обработки транспортируемой по ним воды. В этом случае к воде добавляют соответствующие реагенты, которые обеспечивают осаждение на внутренней поверхности труб нерастворимых соединений, образующих защитную пленку. Так называемая стабилизационная обработка воды - один из самых эффективных способов борьбы с коррозией водопроводных труб. При положительном индексе насыщения воду обрабатывают соляной или серной кислотой. При этом содержание в воде ионов НСО3- снижается, а концентрация СО2 возрастает согласно реакции НСО3- + Н+ → СО2 + Н2О вследствие чего выпадение из воды карбоната кальция прекращается. При I<0 воду подщелачивают известью или содой. В результате агрессивная углекислота связывается в ионы НСО3- по реакции СО2 + ОН- → НСО3-, в результате такой обработки вода перестает быть коррозионной. К числу веществ, добавление которых к воде приводит к образованию защитных пленок и торможению процесса коррозии, относятся гексаметафосфат натрия и жидкое стекло. При обработке воды гексаметафосфатом натрия образуются малорастворимые соединения, которые цементируют коррозионные отложения, делают их плотными и малопроницаемыми для воды и кислорода. Применение жидкого стекла для защиты от коррозии основано на его способности взаимодействовать с ионами кальция и магния, присутствующими в воде, и образовывать защитную пленку, состоящую из силикатов указанных металлов.
Сущность электрохимической защиты состоит в предотвращении растворения железа на анодных участках путем присоединения к системе анодов (протекторов), изготовленных из металлов с более отрицательным электродным потенциалом, чем защищаемый металл. Для защиты стальных конструкций могут быть использованы аноды из цинка, алюминия и их сплавов. Защищаемое сооружение выполняет роль катода. Универсальных средств защиты от микробиологической коррозии не существует. Описанные методы создания защитных покрытий обеспечивают изоляцию металлической поверхности от воды, а следовательно, и от микробиологического воздействия. В некоторых случаях могут использоваться бактерицидные или бактериостатические вещества. Разрушение бетона и железобетона под воздействием воды. Бетон и железобетон являются основными материалами, используемыми в строительстве сооружений водопровода и канализации. Вода, активно воздействуя на эти материалы, вызывает их разрушение, что может привести к нарушению технологических процессов, снижению пропускной способности трубопровода, ухудшению качества воды. Возможность и скорость разрушения бетонных и железобетонных конструкций под воздействием воды зависят как от состава воды, контактирующей с ним, и от условий этого контакта. Считается, что арматура железобетона не корродирует до тех пор, пока слой плотного водонепроницаемого бетона, защищающего ее. По тем или иным причинам не нарушается. Появление трещин и постепенное разрушение бетона обеспечивает доступ агрессивной среде к арматуре и способствуют развитию коррозии. Коррозия арматуры железобетона имеет электрохимическую природу. С развитием коррозии объем образующейся ржавчины постепенно увеличивается, что приводит к разрыву слоя бетона вдоль арматуры. Химическое разрушение бетона вызывается процессами трех типов: 1. растворение в водной среде компонентов бетона; 2. химическое взаимодействие компонентов бетона с присутствующими в воде веществами, сопровождающееся выносом продуктов реакции в воду и ослаблением механической прочности бетона; 3. образованием в теле бетона продуктов химических реакций, вызывающих разрыв и разрушение бетона. Действие агрессивной углекислоты.При твердении бетона в нем образуется около 10% свободного гидроксида кальция. Это обеспечивает создание сильнощелочной среды с рН =14. Такой бетон обладает защитными свойствами по отношению к арматуре. Действие агрессивной углекислоты на бетон проявляется в выщелачивании из бетона извести. Этот процесс является одной из основных причин разрушения бетона. Выщелачивание извести, или процесс карбонизации бетона, описывается реакцией: Са(ОН)2 + СО2 → СаСО3 + Н2О (1) Карбонизация может быть поверхностной, и в этом случае стойкость бетона увеличивается, т.к. образующаяся корка СаСО3 обладает защитными свойствами. Однако в условиях постоянного контакта с агрессивной углекислотой это слой легко растворяется в соответствии с реакцией: СаСО3 + СО2 + Н2О → Са(НСО3)2 (2) Совокупность реакций 1 и 2 приводит к выщелачиванию из бетона извести и переводу ее в растворимый гидрокарбонат кальция. Процесс карбонизации может происходить не только на поверхности, но и в толще бетона, что приводит к уменьшению его механической прочности и снижению защитных свойств по отношению к арматуре. Карбонизация в толще бетона обычно происходит на отдельных участках бетона, в местах трещин, пустот и других дефектов. Влияние рН. Значение рН среды, контактирующей с бетоном, не должно выходить за пределы 6-9. Разрушающее действие кислот на бетон возрастает с увеличением растворимости образующихся кальциевых солей в ряду серная кислота, азотная и соляная. Сильнощелочные соединения, присутствующие в сточных водах, приводят к растворению алюмосодержащих компонентов бетона и таким образом нарушают его структуру. Влияние ионного состава воды. Скорость разрушения бетона зависит от ионного состава воды. Например, если вода содержит много аммонийных соединений, то при контакте ее с сильнощелочной средой в теле бетона может наблюдаться выделение аммиака, ускоряющего растворение извести и разрушение бетона. Аналогичное действие оказывают соли магния и любые более слабые, чем известь, основания. Особенно агрессивной по отношению к бетону является вода, содержащая одновременно повышенные концентрации соединений аммония и магния и сульфаты. Влияние микроорганизмов. Разрушение бетона часто связано с деятельностью бактерий, осуществляющих превращения серы. При этом создаются оптимальные условия для жизнедеятельности сульфатредуцирующих бактерий, восстанавливающих сульфаты при сопряженном окислении органических веществ с образованием Н2S. Разрушения бетона происходят, в основном, в верхней части трубопровода над уровнем воды, Условия в этой зоне (наличие кислорода, сероводорода, влаги) оказываются очень благоприятными для развития бактерий, осуществляющих реакции по разрушению бетона. Для предотвращения развития таких процессов прежде всего необходимо поддерживать такую скорость движения воды в трубопроводе, при которой невозможно образование осадков. Химическое разрушение бетона в морской воде вызывается обрастанием, состоящим из живых организмов. В процессе дыхания они выделяют СО2, в результате чего защитная корка СаСО3 на бетоне растворяется. Растительные организмы не разрушают бетон, т.к. поглощают СО2 в процессе фотосинтеза. Т.о. разрушение бетона в морской воде обусловлено совокупным действием химических, механических и биологических процессов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|