Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Всасывание, транспорт и распределение металлов

 

Для токсического действия необходим контакт яда с биологическим субстратом – объектом этого действия. Контакт может осуществляться при циркуляции яда во всех жидких средах организма (крови, лимфе, межтканевой жидкости и т.п.), а также при непосредственном соприкосновении с оболочками клеток, цитоплазмой и её составными элементами.

В силу этого в токсическом действии металлов, как и других ядов, большое значение имеют их транспорт, распределение, концентрация в месте действия, метаболизм, скорость и пути выделения. Вопросы метаболизма ядов, имеющие большое значение для понимания действия органических веществ, мало изучены в отношении металлов. Однако некоторые данные о превращении металлов в живом организме все же имеются. Известны происходящие в организме восстановительные процессы, при которых металлы и неметаллы из состояния высшей валентности переходят в состояние низшей валентности. Это установлено для железа, марганца, молибдена, ванадия, хрома, мышьяка.

Концентрация металлов в месте действия, как и вообще любых ядов или фармакологических средств, является результатом динамических процессов всасывания из места поступления, проникания в жидкие среды, транспорта, распределения в органах и тканях, химических превращений в последних и процессов выведения из организма. Последнее осуществляется с различной скоростью и различными путями.

Резорбция и распределение, а также выделение металлов, как и вообще экзогенных ядов, в конечном итоге схематически представляют как ряд процессов распределения между внешней средой (вода, воздух) и биосредами. В свою очередь в последних происходит перераспределение между фазами: кровью и тканевыми и межклеточными жидкостями, между последними и клетками, между внутриклеточными структурами.

Для осуществления непосредственного контакта любого яда с тканями, клетками, рецепторами и т.д. ему приходится проникать через множество пограничных поверхностей – биологических мембран, их роль играет кожа, слизистая желудочно-кишечного тракта, эндотелии сосудов, альвеолярный эпителий, вообще гистогематические барьеры, оболочка клеток, внутриклеточных структур и т.д. По современным представлениям биологические мембраны имеют белково-липидную структуру. Клеточные мембраны представляют самостоятельный структурный элемент, активно участвующий в процессах обмена веществ. Мембраны рассматриваются как биологические, динамические структуры, содержащие ряд важных энзимных систем. Повреждения, вызываемые ядами, нарушение функций энзимов приводят к изменению проницаемости транспорта через эти оболочки.

Поверхность клеточных оболочек несет отрицательный заряд, что показано на примере эритроцитов, сперматозоидов, многих бактерий; но, в тоже время, на отдельных участках заряд может меняться. Ионы (катионы), достигнув поверхности клетки, либо фиксируются на ней, либо отталкиваются в силу одноименности заряда. Например, полагают, что анионы проходят эритроциты через положительно заряженные поры; положительно заряженные ионы не могут проникнуть через них, с чем связана плохая проницаемость эритроцитов и других клеток для катионов. Одни анионы (хлор, бром) проникают в эритроциты почти мгновенно, но ряд других более сложных (например, JO-3, селеновая кислота) накапливаются в эритроцитах очень медленно.

Схематически транспорт веществ через пограничные поверхности можно разделить на: а) поступление веществ в клетки путем диффузии через водные и липидные барьеры; б) вода и растворенные в ней вещества как бы фильтруются в клетки (вступают в силу гидродинамические и осмотические законы); в) перенос липоидонерастворимых веществ объясняется образованием их соединений с компонентами мембраны. Считают, что двухвалентные металлы проникают через пограничные мембраны в виде фосфатных комплексов.

Клеточные оболочки могут играть и защитную роль в отношении вредного действия ядов, в частности металлов, которые в первую очередь фиксируются на поверхности и лишь медленно проникают вглубь клетки.

Соли металлов как хорошо растворимые и диссоциирующие соединения, попадая в организм, распадаются на ионы.

Скорость и полнота ресорбции зависят от соотношения между ионизированной и неионизированной частью молекулы.

Металлы высшей валентности и так называемые тяжелые металлы, склонные к образованию очень трудно растворимых гидроксидов, фосфатов, альбуминатов или весьма стойких комплексов, плохо всасываются из желудочно-кишечного тракта или при любых других путях введения.

Таким образом, указанные свойства металлов и их соединений, а именно, способность к диссоциации, образование свободных ионов, гидроксидов, образование прочных альбуминатов, гидратов, фосфатов определяют количество и состояние металла в организме, в первую очередь в крови.

Свободные ионы металлов быстро удаляются из крови; по данным Д.И.Семенова и И.П.Трегубенко - в течение 5 минут. Они также быстро выделяются из организма или накапливаются в скелете. Последнее, так же как и быстрое выделение с мочой, обычно указывает на то, что металл в организме циркулирует в ионизированном или молекулярно-дисперсном состоянии.

Так, благодаря способности к комплексообразованию металлы в тканях откладываются в виде комплексных соединений с белками, аминокислотами. Однако распределение их по большей части неравномерно, (Левина, 1982) а в ряде случаев избирательно. Например, высокое содержание в почках ртути, таллия, урана, кадмия или бария, рубидия, лития в мышцах, преимущественное накопление в эритроцитах калия, рубидия, свинца, шестивалентного хрома, мышьяка, селена и некоторых других.


1.5 Краткая характеристика патогенеза некоторых металлов

 

1.5.1 Кадмий

В промышленности и технике применяется как металлический кадмий, так и его соли – сульфаты, сульфиды и др. Соединения кадмия ядовиты. Ионы этого металла вступают в соединение с карбоксильными, аминными и сульфгидридными (- COOH, - NH2, -SH) группами, имеющимися в молекулах белков, и таким образом задерживаются в организме. Почки, печень и поджелудочная и щитовидная железы служат местами, в которых кадмий может оставаться годами. Известны случаи тяжелых отравлений кадмием, когда человек погибает спустя 9 лет после того, как была прекращена работа с металлом (Николаев, 1986). Действуя на кожу, кадмий вызывает дерматит и экзему.

Тяжелый металл кадмий вообще представляет собой один из самых опасных токсикантов среды (например, он значительно токсичнее свинца).В природной среде кадмий встречается лишь в очень малых количествах – именно поэтому его отравляющее действие было выявлено лишь недавно. Это объясняется тем, что только за 3-4 последних десятилетия он стал находить все большее техническое применение.

Кадмий опасен в любой форме – принятая внутрь доза в 30-40 мг уже может оказаться смертельной. Поэтому даже питье лимонада из сосудов, материал которых содержит кадмий, чревато опасностью. Из-за того, что однажды поглощенное количество кадмия выводится из человеческого организма очень медленно (0,1% в сутки), легко может происходить хроническое отравление. Самые ранние симптомы его – поражение почек и нервной системы, белок в моче, нарушение функций половых органов; позднее возникают острые костные боли в спине и ногах. Типично также нарушение функций легких. Кроме того, предполагается канцерогенное действие кадмия.

В организме кадмий в первую очередь накапливается в почках, и после достижения пороговой концентрации – около 0,2 мг Cd на 1 г веса почек – появляются признаки тяжелого отравления и почти неизлечимого заболевания. К таковым признакам относятся: одышка, наличие белка в моче, малокровие и почечная недостаточность. Как уже говорилось выше, кадмий тяжело поражает половые железы (прежде всего семенники).

Кадмий почти невозможно изъять из природной среды, поэтому он все больше накапливается в ней и попадает различными путями в пищевые цепи человека и животных. Чаще всего причиной повышенного содержания кадмия в воде бывают промышленные газообразные выбросы.

В Японии цинковый рудник загрязнил кадмием реку Дзинцу, и тамошняя питьевая вода стала содержать кадмий; кроме того, речной водой орошали рисовые поля и плантации сои. Спустя 15-30 лет более 150 человек умерло от хронического отравления кадмием, сопровождавшегося атрофией костей всего скелета; этот случай вошел в историю эпидемических отравлений тяжелыми металлами под названием «болезнь итай-итай». В США случаи заболевания итай-итай имели место в связи с потреблением сахарного тростника, который содержит большие количества кадмия. С тех пор в Японии всех, кто, так или иначе, подвергается подобной опасности, систематически обследуют на содержание кадмия в организме. Фармацевтическое предприятие «Pharmacia» в городе Фрейбурге недавно разработало метод, позволяющий сравнительно просто определять содержание кадмия в моче при помощи так называемого  - 2 – микроглобулина (Эйхлер, 1993).

Количество кадмия, попадающее в организм человека, зависит не только от потребления им кадмий-содержащих пищевых продуктов, но и в большей степени от качества его диеты.

В частности, даже весьма незначительная недостаточность железа может заметно усилить аккумуляцию кадмия. Вообще, достаточное количество железа в крови, по-видимому, тормозит аккумуляцию кадмия. Кроме того, известно, что большие дозы витамина D действуют как противоядие при отравлении кадмием.

В настоящее время очень важным источником загрязнения обширных территорий кадмием служат также фосфатные удобрения, с которыми в почву, а следовательно и в воду – всегда попадает некоторое количество кадмия. Речь идет об удобрениях, которые содержат лишь следы кадмия. Это означает, что загрязнение растений, связанное с данным источником кадмия, настолько мало, что определяемые остаточные количества должны лежать намного ниже предела, установленного ВОЗ.

 

1.5.2 Ртуть

Данный металл относится к веществам общетоксического действия, вызывающем у людей летальный исход в количестве 75-300 мг в сутки. Наиболее токсична двухлористая ртуть (сулема), однократная летальная доза, которой составляет для человека 0,2-0,5 г. Ртуть характеризуется высокой нефротоксичностью, приводящей к быстро развивающейся почечной недостаточности. Выведение ртути осуществляется почками через пищеварительный тракт, потовыми и молочными железами.

При отравлениях ртутью, (Эйхлер, 1993) особенно её органическими соединениями, отчетливо выражены симптомы поражений нервной системы (паралич, нарушение зрения и слуха).

Как и другие тяжелые металлы (свинец), ионы ртути энергично соединяются с группами – SH белков и прочно удерживаются в получившихся комплексах; частично ртуть в тканях организма переходит и в сульфид. Белки, богатые этими группами, содержатся в почках, поэтому ртуть, попадая в организм, сосредотачивается преимущественно в этих органах. Ртуть задерживается также и в клетках мозга и слизистой оболочки рта.

Ртуть может попадать в водоемы в самых различных формах и из самых различных источников. В количественном отношении на первое место, вероятно, следует поставить сточные воды химических предприятий; однако нельзя исключить и то, что дождевая вода обмывает посевное зерно, обработанное соединениями ртути. Так как в водной среде значительная часть ртути, в конечном счете, преобразуется в метилртуть, в пищевые цепи попадает именно это высокотоксичное и стойкое соединение.

Каким бы путем ртуть ни попадала в воду, микроорганизмы метилируют её, и при этом всегда образуется метилртуть. Это соединение является жирорастворимым, чрезвычайно ядовитым и очень устойчивым, поэтому оно представляет собой одну из самых опасных форм ртути. На рисунке 1 представлена упрощенная схема превращения ртути в воде.

 

фенилртуть                                      метилртуть

С 6 H5Hg+                                                               CH3Hg+

 

   

                                                                                      (CH3)2Hg

 

 

                                                                                                                      

              Hg º                       Hg 2+                                  

Рис.1. Упрощенная схема превращений ртути в воде

 

1.5.3 Свинец

Все соединения свинца и сам металл ядовиты.

Свинец удерживается белками эритроцитов, затем поступает в плазму крови (в виде комплексов с гамма-глобулином) и, наконец, достигает почек, печени и других органов. В костях свинец накапливается и долго остается там. Время от времени происходит выделение свинца из костей, что может стать причиной неожиданного развития симптомов острого отравления. Долгое время свинец остается и в головном мозге. Поражение десен, расстройство кишечника, заболевание почек и нервной системы – результаты отравления свинцом.

Случаи хронического отравления свинцом отмечаются при длительном употреблении питьевой воды с содержанием металла 0,04-1 мг/л.

Главной мишенью воздействия свинца при хронических отравлениях является центральная и периферическая нервная система (свинцовая энцефалопатия, проявляющаяся в виде головных болей, нарушением сна, памяти, возникновением тремора, галлюцинаций и т.д.). Для различных вариантов отравления свинцом характерно поражение почек, пищеварительного тракта.

Подводя итоги данной главы, мы можем отметить, что для выявления связи токсического действия металлов необходимо знать их физические, химические и физико-химические свойства. Наиболее важным можно считать то, что такие взаимоотношения с удовлетворительной корреляцией установлены между токсичностью металлов и рядом показателей, характеризующих фундаментальные свойства атомов и ионов металлов (и неметаллов), их заряды, электронную структуру, особенности строения последней и т.д. Такие связи установлены также между токсичностью и степенью прочности соединения металла с неметаллической частью молекулы в разнообразных соединениях металлов.

Анализ материалов о транспорте, распределении, путях выведения металлов из организма показал, что они, в свою очередь, связаны с рядом тех же физических, химических свойств, как самих металлов, так и поступающих в организм соединений. Основное значение имеет циркуляция металлов в виде свободных ионов, прочность образуемых ими связей с биокомплексами, растворимость последних и химические превращения поступивших соединений – быстрота диссоциаций, растворимость образующихся после диссоциации или гидролиза соединений и т.д.

Прочность связей, степень сродства катионов металлов к функциональным химическим группировкам в организме, также может определять не только общую токсичность, но избирательность или специфичность действия, что подтверждается на примере такой распространенной во всех тканях и вместе с тем такой биологически важной функциональной группе – сульфгидридной. Так, специфическое повреждение почек такими металлами как, как ртуть или кадмий, объясняют высоким сродством их к SH-группам ткани почек (также и особо высоким содержанием последних в почках).

 


Глава 2 Материалы и методы исследования

 

2.1 Состояние качества питьевой воды в г.Южно-Сахалинске и Сахалинской области на начало 2004 года

 

В области только в 7 муниципальных образованиях (в Тымовском, Поронайском, Холмском, Смирныховском, Анивском, Ногликском, Невельском районах) разработаны и действуют целевые программы по обеспечению населения доброкачественной питьевой водой. Однако финансирование мероприятий по вопросам водоснабжения из бюджетов муниципальных образований осуществляется недостаточно.

Не решены вопросы организации зон санитарной охраны в Александровск-Сахалинском, Анивском, Макаровском, Невельском, Холмском районах.

Коммунальные водопроводы не имеют необходимого комплекса водоподготовительных сооружений в 100% Охинском, в 50% Курильском и Углегорском, в 80% Невельском, в 66% Александровск-Сахалинском районах, в 87% в г. Южно-Сахалинске.Отсутствуют обеззараживающие установки в 75% на водопроводах в Курильском, в 20% в Невельском, в 43% Томаринском районах, в 83% г. Южно-Сахалинске.

Не соответствуют санитарным требованиям по комплексу водоподготовительных сооружений на 85% ведомственных водопроводах в г. Южно-Сахалинске, на 40% в Холмском, на 100% в Углегорском, на 50% в Томаринском, на 100% в Курильском районах.Не обеспечены обеззараживающими установками 33% водопроводов в Долинском, 100% в Курильском, 50% в Томаринском районах, 84% в г. Южно-Сахалинске.

В источниках централизованного водоснабжения за 2003 год удельный вес неудовлетворительных проб по санитарно-химическим показателям увеличился на 4,3%.Наиболее неудовлетворительное качество воды водоемов 2 категории по санитарно-химическим исследованиям зарегистрировано в Поронайском, Холмском районах, в г. Южно-Сахалинске.

Увеличиваются обьемы сброса загрязненных вод без очистки и обеззараживания в поверхностные водные обьекты. Из общего обьема сточных вод проходят через очистные сооружения только 58%. Из-за длительной эксплуатации без провидения капитальных ремонтов ежегодно снижается эффективность работы очистных сооружений (Дарижапов, 2004).

 

2.2 Характеристика районов г.Южно-Сахалинска в которых происходило исследование качества питьевой воды

 

Мониторинг качества питьевой воды проводился в период с 12 января 2004 г. по 29 декабря 2006 г. За этот период анализу было подвергнуто 302 пробы воды. Из них 248 пробы исследованы работниками городской СЭС с помощью атомно-адсорбционного метода и, соответственно, нами исследовано 54 пробы методом инверсионной вольтамперометрии.

Исследования качества питьевой воды проводили в пяти районах г.Южно-Сахалинска в течение 2004-2006 гг. Среди исследуемых районов нами были выбраны следующие:

1) Школа № 34 в п. Новоалександровск.

2) Водовод I в п. Луговом.

3) Квартал образованный пересечением ул. Комсомольской, ул. Пуркаева, ул. Ленина и пр. Победы.

4) Район ул. Авиационнаой.

5) Район военного городка (пр. Мира 380-391).

Последний объект (военный городок) выбран не случайно, так как он не подведомственен Сахалинскому водоканалу и сравнение результатов проб полученных в данном районе с 4 выше перечисленными, может служит критерием степени очистки воды проводимой на водоочистных сооружениях города.

Число проб подвергнутых анализу в период с 2004-2006 годы приведено в таблице 1.

 

Таблица1. Число проб отобранных в период с 2004-2006 годы.

Объект.

Число проб.

2004 год 2005 год 2006 год
Школа №34 в п.Новоалександровск. 16 (4/12) 16 (4/12) 16 (4/12)
Водовод I в п.Луговом 16 (4/12) 16 (4/12) 16 (4/12)
Центр города 32 (8/24) 39 (8/31) 48 (12/36)
ул.Авиационная 16 (4/12) 16 (4/12) 16 (4/12)
Военный городок 6 (3/3) 24 (12/12) 24 (12/12)

 

Число за скобками показывает общее количество проб. В скобках, левая цифра указывает количество проб, подвергнутое полному санитарно-химическому анализу, а правая - сокращенному санитарно-химическому анализу. Кроме этого, мы исследовали ежегодно по 1 пробе в четырех районах выше указанных районах города. Полученные данные соответствует тем, которые предоставили нам работники СЭС.

 

2.3 Отбор проб воды для санитарно-химического исследования. ГОСТ 4979-69 от 1 февраля 2001 года

 

Для отбора проб воды для санитарно-химического анализа брали бутыль емкостью два литра с притертой пробкой. Перед отбором проб бутыль не менее двух раз ополаскивали водой подлежащей исследованию.

Бутыль наполняли водой до верха. При закрытии бутыли верхний слой воды сливали так, чтобы под пробкой оставался не большой слой воздуха

На каждую бутыль составляли сопроводительный документ, в котором указывали дату отбора, наименование и местонахождение источника.

Анализ проводили не менее чем через три часа после взятия пробы.

2.4 Метод инверсионной вольтамперометрии (Соловьев, 1998)

 

Измерение концентрации ионов металлов в пробах питьевой воды мы проводили с помощью анализатора инверсионного вольтамперометрического «АКВ-07МК».

Измерение массовой концентрации элементов в растворах проб определяли «методом стандартных добавок», не требующим построения градуированной кривой. Метод стандартных добавок включает регистрацию вольтамперограмм при одних и тех же параметрах измерений серии следующих растворов:

1) фонового электролита;

2) пробы, подготовленной к измерениям;

3) той же пробы, в которую вводят добавки растворов измеряемого иона, с известной концентрацией (рабочих растворов).

Результата измерений рассчитывали сравнением величин аналитических сигналов полученных вольтамперограмм.

В таблице 2. представлены диапазоны и границы погрешностей результатов измерений по ГОСТу Р 8563-96.

Методика обеспечивает получение результатов анализа массовой концентрации ионов кадмия, свинца, меди, цинка, мышьяка, ртути, серебра и селена в пробах питьевой, природной, морской и очищенной сточной воды с погрешностью, не превышающей значения в таблице 2. при доверительной вероятности Р=0,95 нормы погрешности измерений.

 

Таблица 2. Диапазоны и границы погрешности результатов измерений.

Наименование иона Диапазон массовой концентрации, мг/дм3 Границы относительной погрешности, ± %

Вода питьевая, природная и морская

Кадмий 0,001  1,0 0,11Х + 0,28
Свинец 0,001  1,0 0,12Х + 0,28
Медь 0,001  1,0 0,10Х + 0,25
Цинк 0,01  1,0 0,07Х + 1,30

Мышьяк

Железо

0,002  0,01 25
св. 0,01  0,1 20
св. 0,1 10

Ртуть

0,0001 – 0,001 25
св. 0,001 15

Серебро

0,0005  0,001 35
св. 0,001 30

Селен

0,0005  0,001 25
св. 0,001 21

 

Нами было исследовано три группы следующих элементов

1) Кадмий, медь, свинец, цинк, железо.

2) Мышьяк, ртуть.

3) Серебро, селен.

 

2.4.1 Приготовление вспомогательных растворов для измерения концентрации ионов металлов в пробах питьевой воды

 

2.4.1.1 Приготовление основных стандартных растворов ионов кадмия, свинца, меди, железа, цинка, ртути, мышьяка, селена и серебра.

Вскрывали стеклянную ампулу стандартного образца соответствующих растворов ионов кадмия, свинца, меди, цинка, железа, ртути, мышьяка, селена и серебра с концентрацией 1,0 мг/см3 , каждый раствор выливали в сухой стакан, 5,0 см3 раствора с помощью пипетки вместимостью 5,0 см3 переносили в мерную колбу объемом 50 см3 и доводили до метки бидистиллированной водой.

 

2.4.1.2 Приготовление аттестованных растворов ионов кадмия, свинца, меди, цинка, железа, ртути, мышьяка, селена и серебра.

Аттестованные растворы с концентрацией 1,0 и 10,0 мг/дм3 готовили отдельно для каждого иона из ранее приготовленных основных растворов, разбавляя их дистиллированной водой.

Объем основных растворов и мерных колб, массовая концентрация исходных и приготовленных растворов ионов кадмия, свинца, меди, цинка и железа и другие необходимые сведения приведены в таблице 3.

 

Таблица 3. Приготовление аттестованных смесей (АС) растворов ионов кадмия, свинца, меди, цинка, железа, ртути, мышьяка, селена и серебра

Концентрация исходного раствора для приготовления АС, мг/дм3 Объем исходного раствора для приготовления АС, см3 Объем мерной колбы, см3 Концентрация приготовленного раствора АС, мг/дм3
100 5 50 10,0
100 1 100 1,0

 

2.4.1.3 Приготовление раствора азотной кислоты концентрацией 1 М.

В мерную колбу объемом 1000 см3 помещали 200-300 см3 бидистиллированной воды и вносили цилиндром 70 см 3 концентрированной азотной кислоты, (р = 1,42 г/см3) перемешивали, охлаждали и доводят до метки бидистиллированной водой.

 

2.4.1.4 Приготовление раствора азотной кислоты концентрацией 0,1 М.

В мерную колбу вместимостью 1000 см3 вносили пипеткой, 7,0 см3 концентрированной азотной кислоты и доводили до метки бидистиллированной водой.

 

2.4.1.5.Приготовление хлороводородной кислоты концентрации 1 М.

В мерную колбу объемом 1000 см3 помещали 200-300 см3 бидистиллированной воды и вносили цилиндром 80 см3 концентрированной хлороводородной кислоты, (р=1,19 г/см3) перемешивали, охлаждают и доводили до метки бидистиллированной водой.

 


2.4.1.6 Приготовление раствора ртути (II) азотнокислой концентрации 0,01М

Навеску ртути (II) азотнокислой массой 0,343г. взвешивали на аналитических весах, помещали в мерную колбу объемом 100 см3 и растворяют в 50 см3 раствора азотной кислоты концентрации 0,1 М и доводят до метки бидистиллированной водой.

 

2.4.1.7 Приготовление раствора фонового электролита для измерения массовой концентрации ионов кадмия, свинца, меди, цинка и железа.

В мерную колбу объемом 1000 см3 вносили 50 см3 раствора хлороводородной кислоты концентрации 1М, 10 см3 раствора азотнокислой ртути концентрации 0,01М и доводили до метки бидистиллированной водой.

 

2.4.1.8 Приготовление насыщенного раствора сернокислого гидразина.

В стакан, объемом 200 см3 цилиндром наливали 100 см 3 бидистилированной воды, 1 см3 концентрированной серной кислоты (р= 1,83 г/см3) и перемешивали. В полученный раствор добавляли небольшими порциями сернокислый гидразин, растворяя его до получения насыщенного раствора.

 

2.4.1.9. Приготовление 0,1М раствора трилона Б.

9,3 г соли динатриевой этилендиамин-N,N,N,N- тетрауксусной кислоты 2- водной трилона Б взвешивали с погрешностью не более 0,1 г, помешали в мерную колбу объемом 250 см3 и растворяли в бидистиллированной воде, после чего содержимое колбы доводят до метки и перемешивали.

 

2.4.1.10. Приготовление фонового электролита для измерения массовой концентрации ионов мышьяка.

В мерную колбу объемом 1000 см3 цилиндром наливали 100 см3 насыщенного раствора сернокислого гидразина, добавляли 50 см3 0,1М раствора трилона Б и доводили до метки бидистиллированной водой.

 

2.4.1.11.Приготовление фонового электролита для измерения массовой концентрации ионов ртути.

В мерную колбу объемом 1000 см3 вносили 10 см3 хлорной кислоты (р= 1,50-1,51 г/см3) и 30 см3 0,1М соляной кислоты и доводили объем до метки бидистиллированной водой.

 

2.4.1.12 Приготовление фонового электролита для измерения массовой концентрации ионов селена и серебра.

10,1 нитрата калия взвешивали с погрешностью не более 0,1г. помещали в мерную колбу вместимостью 1000 см3, растворяли в бидистиллированной воде, доводя раствор до метки бидистиллированной водой и перемешивали.

 

2.4.2 Подготовка проб питьевой воды

Отбор, консервация и хранение проб питьевой воды проводили в соответствие с ГОСТ 24481.

Для каждого анализа отбирали по три параллельные пробы воды (одна резервная). Измерения массовой концентраций ионов металлов выполняли в одной пробе. При проведении анализов одновременно готовили две параллельные пробы.

Пробу подготовленного к испытанию образца воды объемом 100 см3 переносили в выпаривательную чашку, добавляли 1-2 см3 концентрированной азотной кислоты (р=1,42 г/см3). Содержимое чашки упаривали до “влажных солей”. Если остаток был темным, кислотную обработку повторяли до его осветления. Если остаток не осветлялся, пробу упаривали досуха и прокаливают в муфельной печи при 450 оС в течение 30 мин.

Раствор пробы, полученный в результате полной минерализации, охлаждали и переносили в мерную пробирку объемом 20 см3 через бумажный фильтр, увлажненный раствором фонового электролита. Раствор контрольной пробы готовили к выполнению измерений аналогично пробам воды, используя вместо пробы бидистилированную воду.

 

2.4.3 Проверка электрохимической ячейки

Готовили пробу для регистрации фона: в фарфоровую чашку пипеткой помещали 1-5 см3 бидистиллированной воды, добавляют 2 см3 раствора фонового элекролита для измерения массовой концентрации соответствующих ионов, перемешивали стеклянной палочкой и нагревают на электроплите в течение 10 минут. После охлаждения содержимое чашки растворяли в 1 см3 раствора соляной кислоты концентрации 1М и добавляли 1 см3 раствора трилона Б, и после перемешивания переносили в мерную пробирку на 20 см3, доводя содержимое до метки бидистиллированной водой. Полученный раствор переносили в стеклоуглеродный тигель и регистрируют вольтамперограммы (1) при параметрах, указанных в таблице 4.

Затем в стеклоулеродный тигель одноканальной пипеткой переменного объема добавляли по 20 мкл рабочих растворов соответствующих определяемых ионов, регистрировали вольтамперограммы (2) при тех же параметрах. Идентифицируют аналитический пик определяемого элемента. Отсутствие на вольтамперограммах (1) аналитических пиков, определяемых элементов, свидетельствует о чистоте ячейки.

 

2.4.4 Наименование основных операций выполнения измерений массовой концентрации ионов

а) Регистрация вольтамперограмм «холостой» пробы.

В стеклоуглеродный тигель электрохимической ячейки помещали 20 см 3 «холостой» пробы. Закрепляли тигель в подставке-держателе прибора. Устанавливали потенциал электрохимической очистки рабочего электрода в соответствии с таблицей 4. и не менее 60 секунд не регистрируя вольтамперограммы производили очистку электрода. Выключали ячейку. Устанавливали параметры измерений (потенциал накопления, амплитуду развертки, диапазон тока, и время накопления) в соответствии с рекомендациями таблицы 4. Включали ячейку, регистрировали вольтамперограммы и выключали ячейку.

Устанавливали потенциал очистки электрода 0,0 В. Включали ячейку, выполняли электрохимическую очистку электрода в течение времени, равном времени накопления и выключали ячейку.

Цикл указанных выше операций повторяли не менее трех раз. Электрохимическая очистка электрода обязательна после записи каждой вольтамперограммы.

Результаты измерений (регистрация вольтамперограммы раствора «холостой» пробы и условия выполнения всех измерений) записывали в программном интерфейсе системы сбора и обработки данных в соответствии с руковством по эксплуатации прибора.

б) Регистрация вольтамперограмм раствора пробы.

В стеклоуглеродный тигель помещали 20 см3 раствора пробы, подготовленной к измерениям. Закрепляли тигель на подставке-держателе прибора. Значения потенциалов пика окисления определяемых металлов является качественной характеристикой элемента: их ориентировочные значения приведены в таблице № 4.

Результаты измерений записывал в программном интерфейсе прибора.

в) Регистрация вольтамперограмм пробы с добавками.

Добавку растворов аттестованных смесей (АС) определяемых ионов пипеточным дозатором вносили в тигель с пробой после регистрации вольтамперогамм и очистки электрода.

Объем и концентрация добавляемых в ячейку растворов АС (таб. 4) устанавливаются экспериментально для каждой пробы таким образом, чтобы высота аналитического пика измеряемого иона при регистрации вольтамперограмм пробы с добавкой увеличилась в 1,5-3 раза прим значениях параметров прибора, установленных при регистрации вольтамперограммы измеряемой пробы.

Суммарный объем всех растворов АС, добавленных в ячейку, не должен превышать 10% от объема пробы.

 

2.4.5. Обработка результатов измерений

Обработку результатов измерений пробы воды (Х1 и Х2) и расчет массовой концентрации элемента в пробе воды Хср выполняет система сбора и обработки данных анализатора. За результат анализа принимают среднее арифметическое значение из результатов двух параллельных измерений Хср.

Массовая концентрация элемента в пробах воды Х, мг/кг, вычисляют по формуле:

 

Х= Хср- Х0                                                                                                                                           (2.1)

 

где:

Х0- массовая концентрация элемента в “холостой” пробе.

 

2.4.6 Очистка электродов

После проведения серии анализов или в конце работы ячейку и электроды тщательно промывают бидистилированной водой, рабочие электроды механически очищают фильтровальной бумагой, затем бумагой, смоченной этанолом, вспомогательный (хлорсеребряный) электрод ополаскивают раствором хлороводородной кислоты, промывают бидистиллированной водой и помещают в насыщенный раствор хлорида калия.

 

 

Таблица 4. Параметры измерений при регистрации вольтамперограмм

1 2 3 4 5 6
Определяемые ионы Zn, Cd, Pb, Cu, Fe Cd, Pb, Cu, Fe Se (+4) As, Hg Ag
Tип рабочего электрода углеситаловый углеситаловый углеситаловый золотой углеситаловый
Напрвление развертки Положительное Положительное Отрицательное Положительное Положительное
Потенциал очистки электрода, В 0,0 0,0 0,0 + 1,7 + 0,6
Потенциал накопления, В - 1,3 - 0,9 - 0,3 - 0,5 - 0,3
Время накопления, сек 60 60 60-300 60-300 60-300
Амплитуда развертки, В 3-30 0,5-1 0,5-1 0,5-1,25 0,5-1
Потенциал аналитического пика, В -1,0-0,1 -0,7-0,1 -0,6 0,15-0,7 0,3
Время очистки 60 60 60 60 60
Скорость линейного потенциала мВ/сек 20-50 20-50 50 50 50
Ячейка трех электродная трех электродная трех электродная трех электродная трех электродная
Вид полярографии инверсионная инверсионная инверсионная инверсионная инверсионная

 

 

2.5 Определение общей жесткости воды методом комплексонометрического титр

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...