Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Возникновение квантовой механики (1925— 1930 гг)

Трудности теории бора

 

Теория Бора с самого начала вызы­вала многие вопросы, остававшиеся без ответа. Эти вопросы были постав­лены Резерфордом еще при обсужде­нии рукописи его первой статьи. Как понимать сочетание идей Бора и классической механики, в кото­рой нет места для квантовых скачков, и откуда электрон знает, на какую орби­ту ему следует перескакивать?

В 1896 г. голландский физик Питер Зееман (1865—1943) произвел опыт, который пытался осуществить еще Фарадей. Пламя натриевой горелки он помещал между полюсами электромаг­нита и наблюдал в спектроскоп ее спектр. По оси электромагнита был просверлен канал, так что явление можно было наблюдать не только пер­пендикулярно силовым линиям поля (поперечный эффект), но и вдоль поля (продольный эффект). При на­блюдении поперек поля, кроме линии с частотой колебаний vo, равной часто­те колебаний в отсутствие поля, на­блюдались две линии с частотами v1=v0-Dv и v2=v0-Dv. Все три линии линейно поляризованы. Несмещенная линия соответствует колебаниям вдоль силовых линий, смещен­ные — колебаниям, перпендикулярным силовым линиям. При наблюдении вдоль поля несмещенная компонента отсутствует, смещенные линии поляризованы по кругу в проти­воположных направлениях.

Лоренц в 1897 г. дал простую теорию эффекта, исходя из представлений, что в атомах электроны совершают круго­вые движения с циклической часто­той w0. В магнитном поле на них дей­ствует сила Лоренца и частота обра­щения изменяется на величину Dw, рав­ную приближенно:

Лармор (1857-1942) в 1899 г. интер­претировал действие магнитного поля как действие поля тяжести на волчок. Волчок прецессирует вокруг направле­ния силы тяжести с угловой частотой Dw. Точно так же вращающиеся электроны в атоме прецессируют вокруг силовых линий магнитного поля с круговой частотой .

Зоммерфельд, развивая теорию Бора, ввел идею пространственного квантования. Движение электрона по орбите определяется радиальным и азимутальным квантовыми числами или главным квантовым числом п, оп­ределяющим энергию электрона, и побочным квантовым числом k, опре­деляющим форму орбиты. Положение орбиты в пространстве определяется третьим магнитным квантовым чис­лом т. Введение этого числа и кван­тование направлений оси по отноше­нию к магнитному полю позволяет дать объяснение эффекта Зеемана. Однако это объяснение в известном смысле было хуже объяснения, данного Лоренцем. Оно ничего не говорило о поляризации линий. Вообще теория спектров, по Бору и Зоммерфельду, говорила лишь о частотах линий и не могла объяснить их интенсивность и поляризацию. Чтобы теория могла что-то сказать об этом, Бор ввел прин­цип соответствия.

Согласно этому принципу «сущест­вует далеко идущее соответствие» меж­ду квантовым и классическим описа­нием излучения. В квантовом описании линии спектра излучения обусловлены переходами из одного состояния в дру­гое, в классическом эти линии опре­деляются разложением движения электрона в ряд Фурье. При этом, как указывает Н. Бор, «частота излучения, испускаемого при переходе между ста­ционарными состояниями, характери­зуемыми числами п' и п", большим по сравнению с их разностью, совпадает с частотой одной из компонент излучения, которую можно ожидать при избранном движении электрона в ста­ционарном состоянии на основании обычных представлений. Далее Бор пишет: «Задаваясь вопросом о более глубоком значении найденного соответ­ствия, мы вправе, естественно, ожидать, что соответствие не ограничивается совпадением частот спектральных ли­ний, вычисленных тем и другим мето­дом, но простирается и на их интен­сивности. Такое ожидание равносильно тому, что вероятность определенного перехода между двумя стационарными состояниями связана известным обра­зом с амплитудой, соответствующей гармонической компоненте».

Применение принципа соответст­вия позволило определить и поляриза­цию в нормальном эффекте Зеемана. Квантовый переход, соответствующий изменению магнитного квантового числа на ± 1, дает круговую поляриза­цию в плоскости, перпендикулярной к силовым линиям. Квантовый переход Am = 0 соответствует линейной поляри­зации, параллельной силовым линиям.

Но нормальный эффект Зеемана представляет скорее исключение, чем норму. На опыте встречается более сложный эффект: расчленение на не­сколько компонентов (мультиплетов). Мультиплетами оказываются и линии спектров элементов. Аномальный эф­фект и мультиплетная структура спект­ров не укладывались в рамки обычной теории Бора.

С вопросом о сложной структуре линий был тесно связан вопрос о маг­нитных свойствах атома. Еще Д. С. Рож­дественский в своем докладе 15 декаб­ря 1919 г. предполагал, что дублеты п триплеты спектральных линий обуслов­лены действием магнитных сил, вы званных движением электронов. «Маг­нитная задача должна лежать в основе задачи об атомах»,—говорил Рождест­венский.

О.Штерн (1888-1969) и В. Герлах (род. в 1889 г.) в 1921 г. пропустили молекулярный пучок через неоднород­ное магнитное поле и неопровержимо доказали наличие у атомов магнитного момента. Но детали опыта (расщепле­ние пучка на два) опять не уклады­вались в теорию Бора — Зоммерфельда.

В том же, 1921 г. А.Ланде (1888-1975) дал формальную схему описания мультиплетов с помощью векторной модели и ввел связанный с квантовыми числами k и s множитель Ланде. Он также получил «двойной магнетизм»: отношение между магнитным и враща­тельным моментом атомного остова (т.е. ядра и всех электронов, кроме оптического) оказалось вдвое больше того, который следует из теории Бора — Зоммерфельда. Противоречия с теори­ей Бора в ее первоначальном варианте накапливались на каждом шагу, и кван­товое описание спектроскопических фактов все более и более усложнялось.

Особенно тягостное положение со­здалось в теории света. Эйнштейн в своей классической работе 1917 г. о световых квантах сделал дальнейший шаг в сторону корпускулярной теории света. Он предположил, что атом излу­чает, «выстреливая» квант света в том или ином направлении (игольчатое излучение). При этом квант света об­ладает всеми свойствами материаль­ной частицы: энергией Е = hv, массой m.

Эта идея нашла блестящее под­тверждение в открытии, сделанном американским физиком Артуром Комптоном. В 1922 г. Комптон, изучая рассеяние рентгеновских лучей веществом, содержащим слабо связан­ные электроны (графитом), установил, что частота (длина волны) рассеянных рентгеновских лучей изменяется в зави­симости от угла рассеяния. С увеличе­нием угла рассеяния она уменьшается (длина волны увеличивается), излуче­ние становится более «мягким».

В 1923 г. А. Комптон и независимо от него П.Дебай дали теорию «эффек­та Комптона». Теория была основана на идее Эйнштейна: квант света сталки­вается с электроном по закону упругого удара. Применяя законы сохранения энергии и импульса, Комптон и Дебай получили формулу для изменения дли­ны волны рассеянного излучения:

Дебай написал эту формулу в несколько изме­ненном виде. Это простое и наглядное объяснение эффекта в сильной степени способствовало укреплению представ­ления о кванте света как частице, для которой Комптоном был предложен термин «фотон», ставший общеупотре­бительным.

К 1924 г. в науке о свете создалось тягостное положение, которое очень наглядно охарактеризовал О. Д. Хвольсон. Разделив мелом доску на две части Л и В, он вписал на одной стороне факты, объясняемые волновой теорией света, на другой— факты, объясняемые квантовой теори­ей. «Ни волновая, ни квантовая тео­рии,—говорил в связи с этим принимав­ший участие в съезде Эренфест,—не в состоянии охватить все области свето­вых явлений». Всеобъемлющей теории света, как это констатировал Хвольсон, не было.

В поисках выхода из тяжелого поло­жения авторы предложили даже отка­заться от требования применения зако­на сохранения энергии к отдельным актам излучения и поглощения света атомом. Однако гипотеза Бора, Крамерса и Слэтера была опровергнута экспериментами, в которых доказы­валось, что каждый акт взаимодей­ствия света с веществом подчиняется закону сохранения энергии.

Идеи де Бройля

В 1923 г. в докладах Парижской Академии наук были опубликованы три статьи французского физика Луи де Бройля: «Волны и кванты», «Кванты света, дифракция и интерференция». «Кванты, кинетическая теория газов и принцип ферма», в которых выдви­галась совершенно новая идея, перено­сящая дуализм в теории света на сами частицы материи.

Де Бройль рассматривает некоторый волновой процесс, связанный с телом. движущимся со скоростью v = bс. Эта волна обладает частотой, определяемой соотношением E= h v = mc 2, и движется в направлении движения тела со ско­ростью u=cb.

 «Мы будем рассматривать ее лишь как фиктивную волну, связан­ную с перемещением движущегося те­ла». Де Бройль показывает далее, что для электрона, движущегося по замкну­той траектории с постоянной ско­ростью, меньшей скорости света, траек­тория будет устойчива, если на ней укладывается целое число таких волн. Условие это совпадает с квантовым усло­вием Бора. Скорость частицы v = ре является скоростью группы волн, обладающих частотами, мало отличающимися друг от друга и соот­ветствующими частоте — Эта волна, которую де Бройль называл «волной фазы», пилотирует движение частицы, несущей энергию те2, сама же фазовая волна энергии не несет. Гипотеза де Бройля позволяет «осуществить синтез волнового движения и квантов». Де Бройль утверждает наличие в природе волновых явлений и для частиц веще­ства. Он пишет: «Дифракционные явления обнаруживаются в потоке электронов, проходящих сквозь доста­точно малые отверстия. Быть может, экспериментальное подтверждение наших идей следует искать в этом направлении».

Де Бройль указывает, что его новая механика относится к прежней механи­ке, классической и релятивистской, «так же как волновая оптика относится к геометрической». Он пишет, что пред­ложенный им синтез «представляется логическим венцом совместного раз­вития динамики и оптики со времени XVII в.».

Открытие спина

В 1925 г. в физику было введено новое фундаментальное понятие спина. Это понятие было введено Уленбеком и Гаудсмитом, работавшими летом 1925 г. у Эренфеста в Лейдене. К этому времени В. Паули опубликовал свою ра­боту, содержащую формулировку прин­ципа запрета, носящего его имя. Паули показал, что квантовое состояние элект­рона характеризуется четырьмя (а не тремя) квантовыми числами и что в этом состоянии может быть только один электрон. Статья Паули, содержа­щая формулировку его принципа, была опубликована весной 1925 г. Еще ранее Паули указал, что для характерис­тики состояния электрона необходимо четыре квантовых числа: главное кван товое число п, азимутальное квантовое число I и два магнитных числа т, и nif. Гаудсмит рассказал Уленбеку об этой работе Паули. Узнав это, Уленбек высказал такую мысль, что электрон обладает еще одной степенью свободы, которая соответствует вращению элект­рона (спину).

«После его замечания о спине,— писал Гаудсмит,—мы сразу увидели, что полностью выясняется, почему т, всегда равно +1/2 или —1/2. Далее мы увидели, что все случаи расщепления Зеемана могут быть объяснены, если приписать электрону магнитный мо­мент, равный одному целому магнето­ну Бора. Кроме того, стало ясно, что спин находится в полном соответствии с нашим новым толкованием спектра водорода».

Эренфест немедленно отправил статью Уленбека и Гаудсмита в «Die Naturwissenschaften». Она появилась в 13-м номере журнала за 1925 г. Уленбек после консультации с Лоренцем выяснил, что скорость вращения элект­рона на экваторе для требуемого гипо­тезой момента должна быть больше скорости света, и потребовал возвра­щения статьи, но было уже поздно.

Паули очень неодобрительно встре­тил статью Уленбека и Гаудсмита. Еще ранее он отнесся отрицательно к анало­гичной идее, высказанной Кронигом.

Бор и Гейзенберг, наоборот, прояви­ли большой интерес к новой гипотезе, а после того как Томас вычислил на основе гипотезы спина значение дублет­ного расщепления, Паули снял свои воз­ражения.

Таким образом, 1925 г. оказался го­дом рождения квантовой механики Гейзенберга и Дирака, годом рождения новой квантовой статистики Бозе— Эйнштейна, годом рождения принципа Паули и гипотезы спина.

 

 

Список использованной литературы

 

1. П.С. Кудрявцев. «Курс истории физики» М.1982.

2. М.П. Бронштейн. «Атомы и электроны» М. 1980.

3. Г. Липсон. «Великие эксперименты в физике». М. 1972.

4. Ф. Содди. «История атомной энергетики». М. 1979.

5. К. Маколов. «Биография атома». М.1984.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...