Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Вид: Tripanosoma gambiense




Морфологические особенности: размеры 13-39 мкм. Тело изогнутое, сплющенное в одной плоскости, суженное на обоих концах, снабженное одним жгутиком и ундулирующей мембраной. Питается осмотически. Размножается бесполым путем (продольным делением).

Жизненный цикл: возбудитель развивается со сменой хозяев. Первая часть жизненного цикла трипаносомы проходит в пищеварительном тракте мухи це-це за пределами ареала этих мух трипаносомоз не встречается. Вторая часть жизненного цикла проходит у нового хозяина, которым является человек и некоторые млекопитающие. Человек – основной резервуар для лейшмании.

Патогенное значение: у больного трипаносомозом наблюдается мышечная слабость, истощение, умственная депрессия, сонливость. Болезненное состояние длится 7-10 лет и при отсутствии лечения заканчивается смертью.

Природная очаговость: встречается в ряде экваториальных районов Западной Африки.

БИЛЕТ №52

1
Мутации – генотипические изменения на уровне ДНК, возникающие на разных уровнях организации наследственного материала. (генные, хромосомные, геномные).
Генные мутации – тонкие структурные изменения ДНК на уровне отдельных генов. (наследственная гиперхолестеринемия, муковисцидоз, серповидно-клеточная анемия, болезнь Вильсона-Коновалова, фенилкетонурия).

Условно к наследственным болезням можно также отнести болезни, связанные с присутствием в организме некоторых редких вариантов белков (обычно ферментов) и развивающиеся в ответ на более или менее специфические внешнесредовые воздействия, например, на прием некоторых лекарственных средств. В узком смысле под термином «наследственные болезни» понимают моногенные заболевания, т. е. обусловленные мутациями отдельных генов. Многие наследственные болезни проявляются как врожденные состояния. Для наследственных болезней характерно также семейное накопление (заболевание встречается у нескольких членов семьи).
Кстати, следует помнить, что наследуется не сама болезнь, а лишь предрасположенность к ней!

52. 2 Биологическая сущность диссимиляции.

А ) Гликолиз – первый и самый древний этап диссимиляции (анаэробный).

- возник ранее, чем растительный мир занял свою эволюционную нишу.

- самый надежный механизм извлечения энергии.

- но менее эффективный энергетический механизм.

- в ходе гликолиза клетка может запасти только 2 молекулы АТФ.

-в анаэробных условиях пируват переходит в лактат.

Тканевое дыхание – самый эффективный и сложный из этапов диссимиляции (протекает в митохондриях).

- аэробный процесс.

- появился на более поздних этапах, после возникновения растений.

- самый эффективный энергетический механизм, но зависящий от присутствия кислорода.

- в ходе тканевого дыхания клетка способна запасти 36 молекул АТФ.

Б) Энергообразующая система клетки.

-Состоит из лизосом и митохондрий.

-Служит основным источником энергии клетки в виде АТФ.

-В ней происходят процессы диссимиляции(гликоли и тканевое дыхание).

В) Фотосинтез – механизм, благодаря которому гетеротрофы получили возможность эволюционировать.

Отличие фотосинтеза от дыхания:

- фотосинтез происходит в хлоропластах.

- из неорганических веществ, синтезируются органические.

- в атмосферу выделяется кислород.

- необходим свет.

Сходство:

-образуется 38 молекул АТФ.

Г)Сопряженный с окислением процесс образования АТФ – окислительное фосфорилирование.

- в ходе этого окисления часть энергии переходит в энергию макроэргических связей.

Д) Лихорадка – защитная реакция организма направленная, как правило, на борьбу с чужеродным фактором. Усиление окисления сопровождается усилением фосфорилирования – достигается дополнительный приток энергии.

Гипертермия – пагубный процесс, сопровождающийся разобщением процессов окисления и фосфорилирования – перегрев организма не сопровождающийся накоплением дополнительной энергии.

Е) Второй закон термодинамики для открытых систем.

Энтропия возрастает – система стремится самопроизвольно перейти из менее вероятного в более вероятное состояние.

Ж) Энтропия – функция состояния, изменение которой равно теплоте подведенной или отданной системой в обратимом процессе деленной на температуру, при которой осуществлялся процесс.

З) Космическая роль зеленых растений.

- зеленые растения создали запас кислорода на нашей планете, благодаря которому стала возможна дальнейшая эволюция.

- К.А. Тимирязев раскрыл космическую роль растений показав, что необходимые для диссимиляции гетеротрофов вещества создаются и запасаются пигментом хлорофиллом зеленых растений.

- только растения способны использовать неорганические вещества для синтеза органических (глюкоза) и выделять при этом в атмосферу кислород, необходимый гетеротрофам.

Формула Эйнштейна в применении к фотосинтезу:

E=mc

E- энергия,

M – масса,

С – скорость света.

И) Митохондрия – самостоятельный «организм». Она состоит из наружной мембраны, внутренней мембраны, крист и матрикса (митозоль). Они участвуют в процессе клеточного дыхания и запасании для клетки энергии в виде молекул АТФ.

Эндосимбиотическая теория возникновения митохондрий:

Митохондрии – бывшие прокариоты, вступившие в симбиоз с древними эукариотическими клетками.

К) Все энергетические превращения в организме переходят в тепло. Для человека свойственна гомойотермия – сохранение относительно постоянной температуры тела. Температурный гомеостаз = тепловой гомеостаз. Температурный гомеостаз имеет существенные особенности на разных этапах онтогенеза.

Человек – термодинамическая открытая система, находящаяся в постоянном термодинамическом неравновесии со средой.

Центральным звеном, ответственным за терморегуляцию считают гипоталамус.

Энергетический гомеостаз организма человека представляет собой колебательную ритмическую систему.

Проблемы:

1) Снижение уровня температурного гомеостаза и его суточного ритма. Обусловлено снижением энергетического потенциала в клетках организма.

2) Отклонение от энергетического оптимума организма. Ведет к снижению неравновесности биосистемы в целом.

3) Рост энтропии. Изменение важнейшего показателя уровня жизнеспособности – амплитуды суточного ритма.

4) Снижение уровня обмена веществ.

5) Снижение амплитуды суточного ритма интенсивности теплопродукции. Обусловлено уровнем траты энергии на синтез белков, углеводов и липидов, уровнем активности транспорта ионов через мембраны клеток.

6) В процессе онтогенеза по мере удаления от зрелого возраста доля амплитуды суточного ритма к доле амплитуд биоритмом других спектров уменьшается, т.е. удаляется от Золотого сечения в сторону уменьшения порядка и роста энтропии в спектральном составе биоритмов температуры тела.

СЮДА ЖЕ:
Диссимиляция – энергетический обмен. Распад, расщепление органического вещества. Органические вещества, составляющие основу живой материи отличаются от неорганических сложным строением и большим запасом энергии. Идет с выделением энергии.


52.3 Аутэкология изучает жизненные циклы и отношение к факторам среды отдельных особей или видов. Цель ее заключается в том, чтобы выявить характер приспособления их к жизни в конкретном сообществе, их роль в экосистеме. Задача аутэкологии - выявление физиологических, морфологических и прочих приспособлений (адаптаций) видов к различным экологическим условиям: режиму увлажнения, высоким и низким температурам, засолению почвы (для растений).
Теоретическую основу аутэкологии составляют ее законы.

Закон минимума Либиха (1846), дополненный Блэкманом в 1905 году, получил название закона ограничивающего или лимитирующего фактора. Факторы среды, наиболее удаляющиеся от оптимума, особенно затрудняют возможность существования вида. Такие уклоняющиеся от оптимума факторы приобретают в жизни вида или отдельных особей первостепенное значение. Такие факторы получили название лимитирующих (ограничивающих). Их выявление имеет важное практическое значение.

Закон максимума, или закон толерантности ═ Шелфорда (1915). Согласно этому закону лимитирующим (ограничивающим) действием могут обладать не только фактор, находящийся в минимуме, но и фактор, находящийся в максимуме.

На основе этих законов в середине XX века был сформулирован закон оптимума. Согласно ему каждый экологический фактор имеет определенные пределы положительного влияния на организмы. Как недостаточно интенсивное, так и избыточное действие фактора отрицательно сказываются на жизнедеятельности особи.

Графическое изображение действия этого закона выражается параболой. На графике выделяется зона оптимума √ зона, соответствующая наиболее благоприятным условиям жизнедеятельности организма. Две зоны пессимума по обе стороны от оптимальной зоны выражают угнетающее действие фактора как при его недостатке, так и при избытке данного фактора. Максимально и минимально переносимые значения фактора √ это критические точки, за пределами которых существование невозможно и такие зоны называют летальными зонами (зонами гибели).

Пределы выносливости между критическими точками называют экологической валентностью, или нормой реакции организма по отношению к конкретному фактору среды. Она является выражением степени устойчивости организма, т.е. его толерантности.

Закон экологической валентности вида гласит: экологическая валентность вида всегда шире экологической валентности каждой отдельной особи. Степень выносливости (толерантность), критические точки, оптимальная и пессимальные зоны отдельных особей в пределах одного вида не совпадают. Эта изменчивость определяется как наследственными качествами, так и возрастными, половыми и физиологическими различиями.

Закон относительной независимости адаптаций к действию разных факторов. Согласно этому закону степень устойчивости к какому-либо фактору не означает соответствующей устойчивости вида по отношению к остальным факторам. Например, виды, переносящие значительные изменения температуры, не обязательно также устойчивы к широким колебаниям солевого режима и т.д. Это создает большое разнообразие приспособлений организмов в природе. Набор экологических валентностей по отношению к факторам среды составляет экологический спектр вида.

Закон совокупного действия факторов. Один экологический фактор может воздействовать на другой, поэтому сохранение вида зависит от взаимодействия факторов. Один и тот же фактор в сочетании с другими оказывает на организм неодинаковое экологическое действие. С другой стороны, один и тот же экологический результат может быть получен разными путями. Например, увядание растений может быть приостановлено как путем полива, так и снижением температуры воздуха, уменьшающим транспирацию. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы и полностью заменить один другим нельзя. Полное отсутствие воды или одного из элементов питания делает жизнь растений невозможной.

Пути адаптации организма к окружающей среде.

В процессе эволюции у организмов выработались различные приспособления к среде обитания - адаптации. Адаптации проявляются на разных уровнях организации живой материи: от молекулярного до биоценотического. Способность к адаптации — одно из основных свойств живой материи, обеспечивающее возможность ее существования. Адаптации развиваются под действием трех основных факторов: наследственность, изменчивость и естественный (а также искусственный) отбор.

Существует три основных пути приспособления организмов к условиям окружающей среды: активный путь, пассивный путь и избегание неблагоприятных воздействий.

Активный путь — усиление сопротивляемости, развитие регуляторных процессов, позволяющих осуществлять все жизненные функции организма, несмотря на отклонения фактора от оптимума. Например, поддержание постоянной температуры тела у теплокровных животных (птиц и млекопитающих), оптимальной для протекания биохимических процессов в клетках.

Пассивный путь — подчинение жизненных функций организма изменению факторов среды. Например, переход при неблагоприятных условиях среды в состояние анабиоза (скрытой жизни), когда обмен веществ в организме практически полностью останавливается (зимний покой растений, сохранение семян и спор в почве, оцепенение насекомых, спячка позвоночных животных и т.д.).

Избегание неблагоприятных воздействий — выработка организмом таких жизненных циклов и поведения, которые позволяют избежать неблагоприятных воздействий. Например, сезонные миграции животных.

Билет № 53

1. Гипотеза Жакоба и Моно о внутриклеточной регуляции синтеза белка.

Работа генов в любом организме – прокариотическом, эукариотическом, одноклеточном или многоклеточном – контролируется и координируется.

Различные гены обладают неодинаковой временной активностью. Одни из них характеризуются постоянной активностью. Такие гены отвечают за синтез белков, необходимых клетке или организму на протяжении всей жизни, например, гены, продукты которых участвуют в синтезе АТФ. Большинство же генов обладает непостоянной активностью, они работают только в определенные моменты, когда появляется необходимость в их продуктах – белках. Гены различаются и по уровням своей активности (низкий или высокий).

Белки клетки классифицируются как регуляторные и структурные. Регуляторные белки синтезируются на регуляторных генах и контролируют работу структурных генов. Структурные гены кодируют структурные белки, выполняющие структурную, ферментативную, транспортную и другие функции (кроме регуляторной!).

Регуляция синтеза белка осуществляется на всех этапах этого процесса: транскрипции, трансляции и посттрансляционной модификации либо путем индукции, либо путем репрессии.

Регуляция активности генов эукариотических организмов намного сложнее регуляции экспрессии генов прокариот, что определяется сложностью организации эукариотического организма и особенно многоклеточного. В 1961 г. французские ученые Ф. Жакоб, Ж. Моно и А. Львов сформулировали модель генетического контроля синтеза белков, катализирующих усвоение клеткой лактозы – концепцию оперона.

Опероном называют группу генов, работа которых контролируется одним геном-регулятором.

Ген-регулятор – это ген, обладающий постоянной низкой активностью, на нем синтезируется белок-репрессор – регуляторный белок, который может соединяться с оператором, инактивируя его.

Оператор – точка начала считывания генетической информации, он управляет работой структурных генов.

В структурных генах лактозного оперона содержится информация о ферментах, участвующих в метаболизме лактозы. Поэтому лактоза будет служить индуктором – агентом, инициирующим работу oпepoна.

Промотор – место прикрепления РНК-полимеразы.

Терминатор – место окончания синтеза иРНК.

При отсутствии индуктора система не функционирует, поскольку "свободный" от индуктора – лактозы – репрессор соединен с оператором. В этом случае фермент РНК-полимераза не может катализировать процесс синтеза иРНК. Если в клетке оказывается лактоза (индуктор), она, взаимодействуя с репрессором, изменяет его структуру, в результате чего репрессор освобождает оператор. РНК-полимераза соединяется с промотором, начинается синтез иРНК (транскрипция структурных генов). Затем на рибосомах формируются белки по программе иРНК-лактозного оперона. У прокариотических организмов на одну молекулу иРНК переписывается информация со всех структурных генов оперона, т.е. оперон – это единица транскрипции. Транскрипция продолжается до тех пор, пока в цитоплазме клетки сохраняются молекулы лактозы. Как только все молекулы будут клеткой переработаны, репрессор закрывает оператор, синтез иРНК прекращается.

Таким образом, синтез иРНК и, соответственно, синтез белка должны строго регулироваться, поскольку у клетки недостаточно ресурсов для одновременной транскрипции и трансляции всех структурных генов. И про-, и эукариоты постоянно синтезируют только те иРНК, которые необходимы для выполнения основных клеточных функций Экспрессия остальных структурных генов осуществляется под строгим контролем регуляторных систем, запускающих транскрипцию только в том случае, когда возникает потребность в определенном белке (белках).

  1. Малярия как типичный пример антропонозного заболевания. Цикл развития, пути заражения, основы профилактики.

Малярия —группа трансмиссивных инфекционных заболеваний, передаваемых человеку при укусах комаров рода Anopheles («малярийныхкомаров»)и сопровождающихся лихорадкой, ознобами, спленомегалией (увеличением размеров селезёнки), гепатомегалией (увеличением размеров печени), анемией.

Человек заражается ими в момент впрыскивания самкой малярийного комара одной из стадий жизненного цикла возбудителя (так называемых спорозоитов) в кровь или лимфатическую систему, которое происходит при кровососании.

После кратковременного пребывания в крови спорозоиты малярийного плазмодия проникают в гепатоциты печени, давая тем самым начало доклинической печёночной стадии заболевания. В процессе бесполого размножения, называемого шизогонией, из одного бывшего спорозоита, который в клетке печени превращается в шизонта, в итоге образуется от 2000 до 40 000 печёночных мерозоитов. В большинстве случаев эти дочерние мерозоиты через 1-6 недель снова попадают в кровь. Эритроцитарная, или клиническая, стадия малярии начинается с прикрепления попавших в кровь мерозоитов к специфическим рецепторам на поверхности мембраны эритроцитов. Эти рецепторы, служащие мишенями для заражения, по-видимому, различны для разных видов малярийных плазмодиев.

Симптомы и диагностика

Симптомы малярии обычно следующие: лихорадка, ознобы, артралгия (боль в суставах), рвота, анемия, вызванная гемолизом, гемоглобинурия(выделение гемоглобина в моче) и конвульсии. Малярийная инфекция смертельно опасна. Особенно уязвимы дети и беременные женщины.

Диагноз ставится на основе выявления паразитов в мазках крови.

 

  1. Демэкология. Виды популяций. Типы пространственного распределения особей в популяциях (равномерный, диффузный, агрегированный). Экологическая дифференциация человечества.

. Демэколо́гия — раздел общей экологии, изучающий динамику численности популяций, внутрипопуляционные группировки и их взаимоотношения. В рамках демэкологии выясняются условия, при которых формируются популяции. Демэкология описывает колебания численности различных видов под воздействием экологических факторов и устанавливает их причины, рассматривает особь не изолированно, а в составе группы таких же особей, занимающих определённую территорию и относящихся к одному виду.

Типы пространственного распределения особей в популяции:

1. Равномерный (регулярный) – равное удаление каждой особи от соседней.

       
       
       

2. Диффузный (случайный) встречается в природе часто, особи располагаются случайно, нераномерно.

       
       
       

3. Агрегированный (групповой, мозаичный) выражается в образовании группировок особей, между которыми остаются достаточно большие незаселенные территории.

       
       
       

 

 

Экологическая популяция – совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозе называются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто.

ПРИМЕРЫ. Рыбы одного вида во всех стаях общего водоема; древостои в монодоминантных лесах, представляющих одну группу типов леса: травяных, лишайниковых или сфагновых лиственничников (Магаданская область, север Хабаровского края); древостои в осоковых (сухих) и разнотравных (влажных) дубняках (Приморский край, Амурская область); популяции белок в сосновых, елово-пихтовых и широколиственных лесах одного района.

Географическая популяция – совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко – у животных и птиц – во время миграций, у растений – при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

ПРИМЕРЫ. Известны географические расы лиственницы даурской (Larix dahurica): западная (к западу от Лены (L. dahurica ssp. dahurica) и восточная (к востоку от Лены, выделяемая в L. dahurica ssp. cajanderi), северная и южная расы лиственницы курильской. Аналогично выделение М.А. Шембергом (1986) у березы каменной двух подвидов: березы Эрмана (Betula ermanii) и шерстистой (B. lanata). В низовьях р. Яма расположен очаг ели обыкновенной (Picea obovata), отстоящий от сплошного массива ельников к востоку на 1000 км, к северу – на 500 км. Зоологи выделяет тундровую и степную популяции у узкочерепной полевки (Microtis gregalis). У вида "белка обыкновенная" насчитывается около 20 географических популяций, или подвидов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...