Компоненты телекоммуникационной системы
Ниже перечислены основные компоненты телекоммуникационной системы: 1. Серверы, хранящие и обрабатывающие информацию. 2. Рабочие станции и пользовательские ПК, служащие для ввода запросов к базам данных, получения и обработки результатов запросов и выполнения других задач конечных пользователей информационных систем. 3. Коммуникационные каналы – линии связи, по которым данные передаются между отправителем и получателем информации. Коммуникационные каналы используют различные типы среды передачи данных: телефонные линии, волоконно-оптический кабель, коаксиальный кабель, беспроводные и другие каналы связи. 4. Активное оборудование – модемы, сетевые адаптеры, концентраторы, коммутаторы, маршрутизаторы и проч. Эти устройства необходимы для передачи и приема данных. 5. Сетевое программное обеспечение, управляющее процессом передачи и приема данных и контролирующее работу отдельных частей коммуникационной системы. Функции телекоммуникационной системы Чтобы передать информацию из одного пункта и получить ее в другом, телекоммуникационной системе нужно выполнить некоторые операции, которые главным образом скрыты от пользователей. Прежде, чем телекоммуникационная система передаст информацию, ей необходимо установить соединение между передающей (sender) и принимающей (receiver) сторонами, рассчитать оптимальный маршрут передачи данных, выполнить первичную обработку передаваемой информации (например, необходимо проверить, что ваше сообщение передается именно тому, кому вы его отослали) и преобразовать скорость передачи компьютера в скорость, поддерживаемую линией связи. Наконец, телекоммуникационная система управляет потоком передаваемой информации (трафиком).
Протоколы Телекоммуникационная сеть обычно содержит разнообразные аппаратные и программные компоненты, которым необходимо работать совместно, чтобы передавать информацию. Различные компоненты сети "общаются" друг с другом, придерживаясь ряда правил, что и позволяет им работать всем вместе. Такой набор правил, регулирующий процесс передачи данных между двумя точками сети, называется протоколом (protocol). Каждое устройство в сети должно правильно "понимать" протокол другого устройства. Главные функции сетевых протоколов следующие: идентифицировать каждое устройство, участвующее в передаче данных, проверить, не нуждаются ли данные в повторной передаче, выполнить повторную передачу, если произошла ошибка. Несмотря на то, что коммерческие, правительственные и компьютерные учреждения осознают необходимость введения общих стандартов для передачи данных, в промышленности пока нет универсальных стандартов. В следующих главах вопросы внедрения стандартов на передачу данных рассмотрены подробнее.
Типы сигналов: аналоговые и цифровые. Модемы Поток информации в телекоммуникационной системе передается в виде электронных сигналов. Сигналы бывают двух типов аналоговые и цифровые. Аналоговый сигнал представляет собой непрерывные колебания синусоидальной формы. Аналоговые сигналы используются в основном при передаче голоса. Цифровой сигнал, в отличие от аналогового, является дискретным и имеет импульсную форму. С помощью цифровых сигналов информация передается, предварительно закодированная двумя дискретными значениями сигнала: 0 и 1. Как вы уже догадались, такая форма передачи данных весьма удобна при использовании компьютеров, которые понимают именно двоичную информацию. Но в большинстве коммуникационных каналах нельзя передавать цифровые данные без некоторого преобразования – все цифровые сигналы должны быть преобразованы в аналоговые, прежде чем быть переданными по каналу связи. Одним из устройств, применяющихся для преобразования сигналов, является модем (modem – MODulation/DEModulation, модуляция/демодуляция).
Модемы обычно применяют для передачи данных через обычные телефонные линии. Модем – это устройство, преобразующее цифровые сигналы, передаваемые компьютером, в аналоговую форму. На принимающей стороне модем выполняет обратное преобразование сигнала – из аналоговой формы в цифровую.
5.Процесс мультиплексированной передачи информации ячейки.
В информационных технологиях и связи, мультиплекси́рование (англ. multiplexing, muxing) — уплотнение канала, т. е. передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу. В телекоммуникациях мультиплексирование подразумевает передачу данных по нескольким логическим каналам связи в одном физическом канале. Под физическим каналом подразумевается реальный канал со своей пропускной способностью — медный или оптический кабель, радиоканал. В информационных технологиях мультиплексирование подразумевает объединение нескольких потоков данных (виртуальных каналов) в один. Примером может послужить видеофайл, в котором поток (канал) видео объединяется с одним или несколькими каналами аудио. Устройство или программа, осуществляющая мультиплексирование, называется мультиплексором. Мультиплексирование с разделением по частоте (FDM) Технология Мультиплексирование с разделением по частоте (англ. FDM, Frequency Division Multiplexing) предполагает размещение в пределах полосы пропускания канала нескольких каналов с меньшей шириной. Наглядным примером может послужить радиовещание, где в пределах одного канала (радиоэфира) размещено множество радиоканалов на разных частотах (в разных частотных полосах). Основные применения Используется в сетях мобильной связи (см. FDMA) для разделения доступа, в волоконно-оптической связи аналогом является мультиплексирование с разделением по длине волны (WDM, Wavelength Division Multiplexing) (где частота — это цвет излучения излучателя), в природе — все виды разделений по цвету (частота электромагниных колебаний) и тону (частота звуковых колебаний).
Мультиплексирование с разделением по времени (TDM) Технология Мультиплексирование с разделением по времени (англ. TDM, Time Division Multiplexing) предполагает кадровую передачу данных, при этом переход с каналов меньшей ширины (пропускной способности) на каналы с большей освобождает резерв для передачи в пределах одного кадра большего объёма нескольких кадров меньшего. Основные применения беспроводные TDMA-сети, Wi-Fi, WiMAX; канальная коммутация в PDH и SONET/SDH; пакетная коммутация в ATM, Frame Relay, Ethernet, FDDI; коммутация в телефонных сетях; последовательные шины: PCIe, USB. Мультиплексирование с разделением по длине волны (WDM) Технология Мультиплексирование с разделением по длине волны (англ. WDM, Wavelength Division Multiplexing) предполагает передачу по одному оптическому волокну каналов на различных длинах волн. В основе технологии лежит факт того, что волны с разными длинами распространяются независимо друг от друга. Выделяют три основных типа спектрального уплотнения: WDM, CWDM и DWDM. Основные применения городские сети передачи данных магистральные сети передачи данных
Мультиплексирование ячеек от разных источников в единый поток происходит на передающей стороне. На приемной стороне выполняется разделение единого потока ячеек АТМ на множество потоков в соответствие с их идентификаторами ИВП и ИВК. В коммутаторах уровень АТМ определяет куда должна быть направлена входящая ячейка, устанавливает соответствующие идентификаторы и направляет ячейку на следующий линк. Более конкретно: 1. АТМ уровень обеспечивает интерфейс между физическим уровнем и уровнем ААL и осуществляет мультиплексирование ячеек смешивая их в едином физическом канале связи. Распознавание ячеек осуществляется в узлах сети и в оконечной системе с помощью идентификаторов VPI и VCI передаваемых в заголовке ячейки. 2. АТМ уровень осуществляет преобразование (трансляцию) идентификаторов VPI / VCI входящих (в коммутатор) ячеек в соответствующие значения идентификаторов выходящих ячеек. Новые значения идентификаторов вставляются в заголовок ячейки при коммутации ее в выходной канал. Это преобразование осуществляется с помощью таблицы, хранящейся в коммутаторе Таблица строится в коммутаторе во время фазы установления соединения. В этом основное отличие коммутатора от маршрутизатора, последний не имеет дело с соединением как таковым.
3. В оконечных пунктах сети АТМ уровень генерирует и интерпретирует заголовок ячейки. На более высокие уровни передается только полезное информационное поле ячейки. 4. В интерфейсе UNI АТМ уровень реализует механизм управления потоком для доступа к среде. 5. АТМ уровень буферизирует входящие и выходящие ячейки и реализует различные управляющие воздействия (индикация насыщения, установка приоритета потерь ячейки и др.
Итак, основной элемент (блок данных) - ячейка. Функции: Мультиплексирование/демультиплексирование ячеек Трансляция VPI/VCI Генерация/извлечение заголовка Управление потоком (в UNI)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|