Цитоплазматическая наследственность
Основная генетическая информация организма содержится в клеточном ядре. В 1908 г. К. Корренс описал внеядерную (цитоплазматическую) наследственность. Генетический материал содержат митохондрии и пластиды. Эти единицы, в отличие от ядерных генов, называются плазмогенами. В цитоплазме клеток может находиться ДНК вирусов и плазмиды бактерий – кольцевые двухцепочечные ДНК. У человека с цитоплазматической наследственностью связаны болезнь Лебера (нейрит с атрофией зрительного нерва) и анэнцефалия. Цитоплазматическое наследование идет по материнской линии, через яйцеклетки, так как сперматозоиды практически не содержат цитоплазмы. Критериями цитоплазматической наследственности являются: – отсутствие расщепления признаков в потомстве по законам Менделя; –невозможность выявить группы сцепления; –различные результаты возвратного скрещивания; при ядерном наследовании они одинаковы: Р: ♀АА х ♂аа Р: ♀аа х ♂АА Известны несколько видов цитоплазматической наследственности. Митохондриальная наследственность описана Б. Эфрусси в 1949 г. Он обнаружил, что примерно 1% колоний хлебных дрожжей образуют карликовые колонии. Их рост тормозится потому, что произошла мутация плазмогенов и их митохондрии не имеют дыхательных ферментов. Имеются данные о болезнях человека, которые являются следствием мутаций митохондриальных генов (например: митохондриальная цитопатия, несращение верхних дуг позвонков, старческое слабоумие и др.). Пластидную наследственность описал К. Корренс в 1908 г. Растение ночная красавица имеет пестрые листья. Произошла мутация, и в части пластид не образуется хлорофилл. Пластиды при размножении распределяются неравномерно. Часть клеток получает нормальные пластиды и имеет зеленые листья; часть клеток получает пластиды, не имеющие хлорофилла – листья белые и растение погибает; часть клеток получает и зеленые (нормальные) и мутантные пластиды – растения имеют пестрые листья (зеленые с белыми пятнами).
Псевдоцитоплазматическая наследственность связана с попаданием в клетку вируса или чужеродной (бактериальной) ДНК. Примером может быть предрасположенность некоторых мышей к опухолям молочной железы. Если нормальных мышат кормит самка «раковой линии», все мыши будут иметь опухоли молочной железы. И наоборот: если мышат «раковой линии» кормит здоровая самка, все мышата будут здоровы. Причиной фактора молока у мышей оказался вирус. Вторым примером может быть гибель ХY- зигот дрозофил, которую вызывает спирохета, попадающая в мужские гаметы. Генная инженерия Достижения молекулярной биологии, биохимии и генетики дали начало новому разделу науки – генной инженерии. Методами генной инженерии по заранее составленному плану создают новые генетические структуры, организмы с новой генетической программой. Это стало возможным при разработке методов переноса генетической информации из одного организма в другой. Первым этапом методов генной инженерии является получение наследственного материала. Небольшие гены прокариот можно синтезировать химическим путем, если полностью известна последовательность нуклеотидов. Так впервые в 1970 г. Г. Корана синтезировал ген аланиновой т-РНК. Синтез сложных генов проводят с помощью обратной транскрипции методом ферментативного синтеза. В качестве матрицы используют выделенную и-РНК. С помощью фермента обратной транскриптазы (ревертазы) на ней синтезируют кодирующую нить ДНК, которую затем реплицируют (для получения второй, комплементарной нити ДНК). Полученные таким способом гены не функционируют в клетках, так как не имеют промотора и регуляторной части. При переносе в бактерию к структурным генам присоединяют промотор оперона, и транскриптон начинает работать.
Необходимые для пересадки гены можно получать с помощью рестриктаз. Рестриктазы– ферменты, открытые в 1964 г. К настоящему времени их выделено более 500. Они могут узнавать определенные последовательности нуклеотидов и вырезать эти участки из цепи ДНК. На концах фрагмента ДНК образуются одноцепочечные «липкие концы». Полученные гены соединяют с векторными молекулами, которыми могут быть плазмиды бактерий, вирусы и фаги. Рестриктаза разрывает кольцевую ДНК плазмиды, в нее вводят ген (участок ДНК). Фермент лигаза соединяет липкие концы плазмиды с липкими концами гена и получается молекула рекомбинантной ДНК. Такая ДНК способна проникать в клетку-реципиент. Рекомбинантные молекулы ДНК попадают не во все клетки. Поэтому на специальных питательных средах проводят отбор трансформированных клеток с введенным в них геном. Далее проводят размножение клеток с рекомбинантной ДНК и получают клон клеток с определенными свойствами. С помощью генной инженерии получены клоны клеток кишечной палочки (бактерия), которые в больших количествах могут продуцировать инсулин и соматотропин, необходимые для больных. Разработаны методы получения противовирусных сывороток, VIII-го фактора свертываемости крови, антигенов ВИЧ, вакцины против гепатита В. Проходят клинические испытания методы лечения некоторых злокачественных заболеваний, иммунодефицитных состояний и энзимопатий. С помощью генной инженерии созданы растения, способные усваивать азот из атмосферы, микроорганизмы, синтезирующие из углеводов нефти пищевые белки. Методы генной инженерии широко используются для создания банков генов человека, животных и растений. Будущее генной инженерии – это развитие генотерапии и генохирургии наследственных болезней человека, что связано с пересадкой в зародыш или в соматические клетки нормальных (вместо мутантных) или недостающих генов; разработка методов клонирования эмбриональных клеток для получения органов и тканей для пересадки. Все это будет возможно при полной уверенности в безопасности для человека и окружающей среды новых сконструированных генов. Генную терапию у человека можно применять для коррекции генетических дефектов в соматических клетках или в клетках зародыша и на ранних стадиях развития зиготы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|