Продолжение любительского детектива. Голос
Продолжение любительского детектива. Голос После семинара Шноль и Смирнов проговорили недолго. На естественную просьбу познакомить его с Белоусовым Шноль услышал ответ уклончивый. Борис Павлович, мол, живет очень замкнуто, всегда занят, неизвестно, сможет ли уделить время… В общем, придется прежде спросить его согласия. Шноль удалился, подозревая, что ждать ему придется долго. Тем не менее ответ оказался скорым. Смирнов позвонил ему домой в тот же вечер и сообщил, что времени для личной встречи у Белоусова нет, но он согласен поговорить по телефону. Был продиктован номер. Набирать его Шноль не торопился. Попытался представить себе голос человека, которого искал два года. Бывает же такая чертовщина! Живем в одном городе, занимаемся смежными науками, а познакомиться, найти друг друга можем только по счастливой случайности. Как будто по параллельным плоскостям ходим, нигде не пересекающимся… Каким голосом может говорить человек, не имеющий ни времени, ни желания общаться с товарищами по науке, человек, открывший удивительную реакцию, но нигде и ничего о ней не сообщивший? Наверное, глухим басом, коротко, отрывисто, считая в уме бесполезно утраченные секунды… А может быть, это человек слабый, больной, стесняющийся своей внешности. Такой будет говорить фальцетом, сбивчиво, со множеством вводных предложений. Беседа затянется на час – а до сути так и не доберется… Набрав наконец названный ему номер, Шноль долго ждал, пока позовут Бориса Павловича. Женщина, поднявшая трубку, медленно шлепала задниками туфель, очевидно по коридору (было ясно слышно, как она шлепает), потом скрипнула дверь, послышался ее призыв – Борис! – и спустя пару минут послышался голос. Обыкновенный, не бас и не фальцет, очень внятный, спокойный – чересчур даже спокойный, принадлежавший, как легко было понять по говору, исконному московскому интеллигенту. Шноль торопливо представился, начал было излагать историю своих поисков, но голос твердо, хотя и очень вежливо, эту тему отклонил, предложив взять бумагу и записывать. Затем уверенно, явно не нуждаясь в шпаргалке, продиктовал: лимонной кислоты столько‑ то, бромата натрия да сернокислого церия – по столько, серная кислота – вода один к трем. Если нужно, чтобы смена окрасок была легко заметна, можно добавить железо‑ фенантролин. Как вы сказали? Прошу прощения, я не расслышал… Железо‑ фенантролин, комплекс двухвалентного железа с фенантролином, есть такое органическое основание, количество такое‑ то. Вот и все.
Шнолю не хотелось верить, что это все, что разговору конец. Он попытался просить о личном свидании, предложил познакомиться. Голос ему ответил… Нет, рано еще, пожалуй, рассказывать, что он ответил. В общем, не согласился голос материализоваться. Попрощался, в трубке раздались короткие гудки. Весь разговор длился минуты две.
Амигдалин Вскоре после того как был открыт радиоактивный распад и началось его изучение, некоторые из тех, кто этим занимался, начали страдать непонятными недугами. У них расстраивалось пищеварение, выпадали волосы, появлялись признаки белокровия. Первые же опыты на животных подтвердили то, о чем пострадавшие ученые догадывались и сами: элементарные частицы и осколки атомных ядер оказывают на организм губительное действие; живым существам, соприкасающимся с радиацией, необходима защита. Пока речь шла о немногочисленных экспериментаторах, работающих в хорошо оборудованных лабораториях, проблема решалась с помощью толстых стенок из бетона, содержащего свинец, защитных костюмов и прочих средств, изолирующих организм от зловредного излучения.
Началась эра атомного оружия. На столы президентов и фельдмаршалов легли первые секретнейшие доклады, в которых с профессиональным цинизмом высчитывалось, сколько единиц вражеской живой силы можно вывести из строя ударной волной, а сколько – радиацией. Гибель Хиросимы подтвердила: расчеты, к несчастью, верны, они если и ошибаются, то лишь в сторону занижения числа возможных жертв. Так возникла потребность в радиозащитных лекарствах, способных хотя бы частично застраховать безвинных людей, их жизнь и здоровье. Поиски лечебных и профилактических препаратов начались в разных странах одновременно с разработкой новых образцов ядерного оружия. И то, и другое окружалось строжайшей государственной тайной, ибо защитное средство – это тоже оружие. Среди веществ, испытанных советскими учеными, был амигдалин, природный алкалоид, содержащийся в косточках горького миндаля, персика и в некоторых других растениях. Позднее, в 1963 году, о радиозащитном действии амигдалина была написана целая книга. Но поначалу и алкалоид был тайной. Теперь, пожалуй, невозможно установить, кто первым предложил взять на вооружение это вещество, известное с давних времен, но то был человек глубокой культуры и четкого химического мышления. Амигдалин считался изрядно ядовитым, однако такие свойства не были редкостью среди радиозащитных препаратов: опасность, от которой они должны были предохранять, настолько грозная, что как средство от радиации испытывался (и не без успеха) даже цианистый калий, даваемый, разумеется, в несмертельных дозах. Сведения об этих испытаниях, проводившихся за рубежом, возможно, и натолкнули неизвестного нам ученого на мысль предложить амигдалин. Дело в том, что ядовитость алкалоида тем и обусловлена, что при распаде под действием особого фермента, который тоже содержится в персиковых или миндальных косточках, он выделяет синильную кислоту – ту самую, в которую превращается в организме цианистый калий. Книга об этом амигдалине насыщена таблицами, фотографиями, печальными описаниями острых опытов на крысах и собаках – а есть в ней и неожиданная для сухой научной монографии глава об истории амигдалина. Из нее читатель узнает, что еще в древнеегипетском храме Изиды было начертано «умрешь от персика», что таинственные «воды ревности» и «горькие воды» итальянского средневековья, известные также под названием «аква тофана», скорее всего, представляли собой настои горького миндаля или персиковых косточек, что изобретенные в XVIII веке успокаивающие лавровишневые капли содержали все те же опасные компоненты, но только в малых количествах…
Можно сказать, что современная органическая химия началась с амигдалина. Полтора века назад Либих, изучая этот доступный даже в те времена алкалоид, установил, что при ферментативном его распаде выделяется не только синильная кислота, но и «масло горьких миндалей» – бензальдегид. Исследуя бензальдегид, Либих и Велер проделали первую в истории серию последовательных, целенаправленных синтезов, предложили первую теорию, объяснявшую непонятные свойства веществ органического происхождения. Вслед за ними изучать «масло горьких миндалей» взялись молодой русский химик Зинин, француз Жерар, немец Кекуле и десятки других крупнейших мастеров эксперимента. Кем мог быть человек, из тысяч веществ выбравший именно это, украшенное почтенной химической родословной? Думаю – химиком, и притом химиком, прошедшим добрую старую школу… К началу нашего века было установлено, что сам по себе, в отсутствие фермента, получившего название «синаптаза», амигдалин довольно устойчив, синильную кислоту выделяет с трудом и потому в чистом виде он ядовит сравнительно мало. На эту особенность и ориентировались те, кто взялся изучать его радиозащитное действие. Ведь амигдалин доступен, довольно дешев и в случае успеха испытаний его без труда можно добыть в любых количествах. Расчеты во многом оправдались. Амигдалин, если его давать животным заранее, до облучения, очевидным образом повышает их сопротивляемость даже при дозах радиации в 550 или 600 рентген (а это втрое превышает дозу, вызывающую острую лучевую болезнь). При 700, правда, его действие незаметно – но эта доза вообще чудовищна, она считается абсолютно смертельной.
Вводя собакам, мышам или крысам амигдалин в количествах, не вызывавших почти никаких неприятностей, исследователи тем не менее уделили внимание и неприятностям, которые возникают при больших его дозах. И подтвердилась при этом теория, которой руководствовался безвестный инициатор испытаний: амигдалин, подобно синильной кислоте, только несколько слабее, блокирует работу ферментов, управляющих внутриклеточным дыханием. Биохимические анализы показали, что под действием больших его порций в клетках печени падает содержание лимонной кислоты, а также кетоглутаровой, образующейся из той же лимонной в ходе преобразований, составляющих в сумме так называемый цикл Кребса, тот самый цикл, по которому (наряду с аппаратом наследственности) в первую голову ударяет радиация… Эта круговая, бесконечная последовательность ферментативных реакций достойна удивления. Органические кислоты непрерывно превращаются друг в друга, потребляя энергию любого горючего – углеводов, белков, жиров, что в данный момент доступнее. Однако не только на вращение этого биохимического колеса тратятся ресурсы. Колесо оказывается универсальным генератором, выдающим клетке энергию в форме стандартных, пригодных для любой ее житейской надобности молекул аденозинтрифосфата. В этом важнейшем, существеннейшем для выживания клетки пункте, от надежности работы которого зависит все прочее в организме, не приняла природа превращений прямоточных, линейных, нет – выбран был цикл, последовательность, сходная с колебательной. Не совсем, конечно, строга эта аналогия с точки зрения современной теории – но мог ли пройти мимо нее человек, размышляющий о колебательных реакциях? Мог ли он знать другое, тоже часто применяемое название цикла Кребса: цикл лимонной кислоты? Опять на первый план выходила лимонная кислота… Повторяю: мне не известно в точности, кто первым предложил испытать амигдалин, кто первым додумался до особой роли, которую играет в защите от радиации цикл лимонной кислоты. Знаю только одно: в списке авторов книги о радиозащитном действии амигдалина значится имя Б. П. Белоусова.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|