2.2. Выявление уровня развития конструктивного мышления при решении математических задач использованием геометрического материала у младших школьников на уроках математике
1. Психолого-педагогические аспекты развития конструктивного мышления при решении математически задач с использованием геометрического материала у младших школьников на уроках математики. 1. 1. Проблема развития конструктивного мышления при решении математических задач с использованием геометрического материала у младших школьников в психолого-педагогической литературе Прежде чем рассмотреть развитие конструктивного мышления у детей младшего школьного возраста нужно определить, что такое мышление как психофизиологический процесс в целом. Каждое явление и каждый предмет действительности обладают такими свойствами и отношениями, которые можно познать непосредственно, при помощи ощущений и восприятий (цвета, звуки, формы, размещение и перемещение тел в видимом пространстве), и такими свойствами, и отношениями, которые можно познать лишь опосредованно и благодаря обобщению, т. е. посредством мышления. Мышление - это психические процессы отражения объективной реальности, составляющие высшую ступень человеческого познания. Мышление является высшим познавательным психическим процессом. Суть данного процесса заключается в порождении нового знания на основе творческого отражения и преобразования человеком действительности. Исключительно важная особенность мышления – это неразрывная связь с речью. Мы всегда думаем словами, т. е. мы не можем мыслить, не произнося слова. Мышление – это обобщенное отраженное и опосредованное познание действительности. Вообще, что касается понятия «мышление», то следует отметить несколько взглядов. Человек очень мало знал бы об окружающем мире, если бы его познание ограничивалось лишь показаниями его анализаторов. Возможность глубокого и широкого познания мира открывает человеческое мышление. То, что у фигуры четыре угла доказывать не надо, так как мы это видим с помощью анализатора (зрения). А вот, что квадрат гипотенузы равен сумме квадратов катетов, мы не можем ни увидеть, ни услышать, ни почувствовать. Такого рода понятие является опосредованным.
Чаще мы подразделяем мышление на теоретическое и практическое. При этом в теоретическом мышлении выделяют понятийное и образное мышление, а в практическом наглядно-образное и наглядно-действенное. Понятийное мышление – это такое мышление, в котором используются определенные понятия. Образное мышление – это вид мыслительного процесса, в котором используются образы. Эти образы извлекаются непосредственно из памяти или воссоздаются воображением. Наглядно – образное мышление – это вид мыслительного процесса, который осуществляется непосредственно при восприятии окружающей действительности и без этого осуществляться не может. Наглядно-действенное мышление – это особый вид мышления, суть которого заключается в практической преобразовательной деятельности, осуществляемой с реальными предметами. Если задача решается с помощью логических рассуждений, то человек использует логическое мышление. А. К. Артемов логическим называет мышление, которое протекает в форме рассуждений, является последовательным, непротиворечивым, обоснованным [5, с. 80]. Логика изучает логические формы мышления - понятие, суждение, умозаключение. Оперирование ими отражает сущность логического мышления. Понятие есть мысль, в которой отражаются общие, существенные и отличительные (специфические) признаки предметов и явлений действительности. Принято различать общие и единичные понятия. Общими понятиями называют те, которые охватывают целый класс однородных предметов и явлений, носящих одно и то же название. Например, понятия «стул», «здание», «болезнь» и др. В общих понятиях отражаются признаки, свойственные всем предметам, которые объединены соответствующим понятием.
Единичными называются понятия, обозначающие какой-либо один предмет. Единичные понятия представляют собой совокупность знаний о каком-либо одном предмете, однако при этом отражают свойства, который могут быть охвачены другим, более общим понятием. Содержание понятий раскрываются в суждениях, которые всегда выражаются в словесной форме – устной или письменной, вслух или про себя. Мышление – процесс производства умозаключений с логическими операциями над ними (М. Л. Веккер). Умозаключение – форма мышления, позволяющая человеку сделать новый вывод из ряда суждений. Иными словами, на основании анализа и сопоставления имеющихся суждений высказывается новое суждение. Умение логически мыслить, по мнению А. В. Петровского [15, с. 43], включает в себя ряд компонентов: умение ориентироваться на существенные признаки объектов и явлений, умение подчиняться законам логики, строить свои действия в соответствии с ними, умение производить логические операции, осознанно их аргументируя, умение строить гипотезы и выводить следствия из данных посылок и т. д. Поэтому, для него логическое мышление включает в себя ряд компонентов: умение определять состав, структуру и организацию элементов и частей целого и ориентироваться на существенные признаки объектов и явлений; умение определять взаимосвязь предмета и объектов, видеть их изменение во времени; умение подчиняться законам логики, обнаруживать на этой основе закономерности и тенденции развития, строить гипотезы и выводить следствия из данных посылок; умение производить логические операции, осознанно их аргументируя. Психолог Л. Ф. Тихомирова [14, с. 38] в своём исследовании, посвященном психолого-педагогическим основам обучения в школе, справедливо отмечает, что логика мышления не дана человеку от рождения. Ею он овладевает в процессе жизни, в обучении. Подчёркивая значение математики в воспитании логического мышления. Развитие логического мышления ребёнка - это процесс перехода мышления с эмпирического уровня познания (наглядно-действенное мышление) на научно-теоретический уровень (логическое мышление), с последующим оформлением структуры взаимосвязанных компонентов, где компонентами выступают приёмы логического мышления (логические умения), которые обеспечивают целостное функционирование логического мышления [12, с. 47].
Таким, образом, логическое мышление - это вид мышления, сущность которого заключается в оперировании понятиями, суждениями, умозаключениями на основе законов логики, их сопоставлении и соотнесении с действиями или же совокупность умственных логически достоверных действий или операций мышления, связанных причинно-следственными закономерностями, позволяющими согласовать наличные знания с целью описания и преобразования объективной действительности. В следующем параграфе мы рассмотрим особенности мышления учащихся младшего школьного возраста. 1. 2. Специфика решения математических задач с элюентами геометрии как способ развития конструктивного мышления на уроках математике в начальных классах на современном этапе образования в педагогической литературе логический мышление математика урок Мышление детей младшего школьного возраста значительно отличается от мышления дошкольников. Для мышления дошкольников характерно такое качество, как непроизвольность, малая управляемость и в постановке мыслительной задачи и в ее решении, они чаще и легче задумываются над тем, что им интересно, что их увлекает. Младшие школьники, когда возникает необходимость регулярно выполнять задания в обязательном порядке, учатся управлять своим мышлением, думать тогда, когда это нужно, а не только тогда, когда интересно, когда нравится то, о чем надо думать. Конечно, в 6-7 лет понятийное мышление еще не сформировалось, и все же задатки этого вида мышления уже есть. Исследования детского мышления и его развития, в частности перехода от практического к логическому, были начаты Л. С. Выготским. Им же были намечены основные пути и условия этого перехода. Эти исследования, продолженные А. А. Люблинской, Г. И. Минской, Х. А. Ганьковой и др., показали, что практическое действие, даже на высшем уровне развития логического мышления остается как бы «в резерве». «Мышление руками» остается «в резерве» даже у подростков и взрослых, когда новую задачу они не могут решить сразу словесным путем – в уме.
На понимании роли практического действия как начальной ступени процесса развития всех высших форм мышления человека построена концепция «поэтапного формирования умственного действия», разработанная П. Я. Гальпериным. [16, с. 53] На первом этапе ребенок использует для решения задачи внешние материальные действия. На втором эти действия только представляются и проговариваются ребенком (сначала громко, затем про себя). Лишь на последнем, третьем этапе внешнее предметное действие «сворачивается» и уходит во внутренний план. С переходом мышления ребенка на следующую, более высокую ступень развития начальных форм его, в частности практическое мышление, не исчезают, не «отменяются», но их функции в мыслительном процессе перестраиваются, изменяются. Так, например, в работе многих специалистов - архитекторов, художников и т. д. решающую роль играет высшее, словесно-логическое мышление. Однако такой специалист постоянно опирается на конкретные образы и практические действия. Логическое мышление, по мнению А. А. Люблинской, обнаруживается, прежде всего, в протекании самого мыслительного процесса. В отличие от практического, логическое мышление осуществляется только словесным путем. Человек должен рассуждать, анализировать и устанавливать нужные связи мысленно, отбирать и применять к данной ему конкретной задаче известные ему подходящие правила, приемы, действия. Он должен сравнивать и устанавливать искомые связи, группировать разное и различать сходное, и все это выполняется лишь посредством умственных действий. Огромное значение в учебной деятельности младшего школьника имеет операция сравнения. Ведь большая часть усваиваемого материала именно в младших классах построена на сравнении. Эта операция лежит в основе классификации явлений и их систематизации. Для овладения операций сравнения человек должен научиться видеть сходное в разном и разное в сходном. Исследования Е. Н. Шиловой [17, с. 57], Т. В. Косма [18, с. 79] и многих других убедительно показали, что ошибки в выполнении операции сравнения – результат неумения учеников производить нужное умственное действие. Их просто не учили этому. Исследования показали также, что для логического мышления младших школьников характерна еще одна особенность – однолинейное сравнение, т. е. они, устанавливают либо только различие, не видя сходства (чаще всего), либо только сходное и общее, не устанавливая различного. К тому же выступает заметная разница между практическим установлением сходства и различия и умением доказывать, обосновать свое суждение, т. е. объяснить, что такое «сравнение» и что означает «сравнить»[2, c. 53].
Если практически в начале года 38% учащихся I класса называли либо 1-2 признака сходства, либо столько же признаков различий, то только 3-9% из числа учащихся могли объяснить, что они делают, когда находят сходные или различительные признаки. Совершенствование логических умозаключений сохраняется и в других мыслительных процессах: в установлении причинно-следственных связей, в классификации и ответах на поставленные взрослыми вопросы, требующие планирования, догадки, поиска решения. Мыслительный процесс взрослого человека протекает по схеме С1-А-С2, где С1- первый синтез, А-анализ, С2-второй синтез. Для мышления младшего школьника типичен процесс, идущий путем «короткого замыкания», т. е. от С1 непосредственно к С2, минуя развернутый этап анализа. Подобное протекание мыслительного процесса приводит ученика к таким решениям и ответам, которые характеризуются аналогичностью. Подобного рода особенности детского мышления часто выступают и в суждениях детей о поступках и делах людей, о которых они слышали или читают. Эти же особенности обнаруживаются отчетливо в отгадывании загадок, в объяснении пословиц и других формах работы, требующих логического мышления. Например, детям дана загадка: «Я все знаю, всех учу, но сама всегда молчу. Чтоб со мною подружиться, надо грамоте учиться» (книга). Абсолютное большинство детей, не дослушав до конца загадку, кричат – учительница (Она все знает, всех учит). Таким образом, говоря об особенностях мышления младшего школьника и, опираясь на все указанное выше, можно сделать следующие выводы: 1. Особенности логического мышления младших школьников проявляются и в самом протекании мыслительного процесса, и в каждой его отдельной операции (сравнении, классификации, обобщении, совершающихся в разных формах суждения и умозаключения). 2. Для мышления младших школьников характерно однолинейное сравнение (они устанавливают либо только различие, либо только сходное и общее). 3. Для мышления маленького ребенка характерен процесс, идущий путем «короткого замыкания» (С1-С2), минуя развернутый этап анализа. 4. Детям 7-10 лет доступны логические суждения, оперирования понятиями, переходы к обобщениям и выводам. 1. 3. Технологические подходы развития конструктивного мышления при решении математических задач с использованием геометрического материала у младших школьников на уроках математике Развитию мышления в младшем школьном возрасте принадлежит особая роль. С началом обучения мышление выдвигается в центр психического развития ребенка и становится определяющим в системе других психических функций, которые под его влиянием интеллектуализируются, приобретают осознанный и произвольный характер [13, с. 26]. Мышление ребенка младшего школьного возраста находится на переломном этапе развития. В этот период совершается переход от наглядно-образного к словесно-логическому, понятийному мышлению, что придает мыслительной деятельности ребенка двойственный характер: конкретное мышление, связанное с реальной действительностью и непосредственным наблюдением, уже подчиняется логическим принципам, однако отвлеченные, формально-логические рассуждения детям еще не доступны. Никто не будет спорить с тем, что каждый учитель обязан развивать логическое мышление учеников. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Вместе с тем, школьная учебная практика показывает, что многие учителя начальных классов не всегда уделяют достаточного внимания развитию логического мышления и считают, что все необходимые мыслительные навыки разовьются с возрастом самостоятельно. Данное обстоятельство приводит к тому, что в начальных классах замедляется рост развития логического мышления детей и, как следствие, их интеллектуальных способностей, что не может не сказаться отрицательно на динамике их индивидуального развития в последующем. Поэтому существует объективная необходимость поиска таких условий, которые способствовали бы наиболее эффективному развитию логического мышления у детей младшего школьного возраста, значительному повышению уровня освоения детьми учебного материла, совершенствованию современного начального образования, не увеличивая при этом учебной нагрузки на детей. Условие – правила, установленные для той или иной области жизни, деятельности; обстановка для какой-нибудь деятельности, обстановка, в которой происходит что-нибудь [15, с. 78]. Целесообразно, на наш взгляд, выделить (сформулировать) следующие условия, способствующие развитию логического мышления детей на уроках математики. Рассмотрим их. Организационные условия 1. Целенаправленное и систематическое формирование у обучаемых навыков осуществления логических приемов (С. Д. Забрамная, И. А. Подгорецкая и др. ); 2. Обеспечение преемственности между детским садом и школой. 3. Организация развивающей среды. Психолого-педагогические условия 1. Учет возрастных и индивидуальных особенностей детей младшего школьного возраста. 2. Учет психологических закономерностей процесса усвоения знаний. 3. Реализация деятельностного и личностно-ориентированного подходов к развитию логического мышления. Методические условия 1. Подбор специальных заданий по математике направленных на развитие логического мышления младших школьников; 2. Методические рекомендации по развитию логического мышления младших. Педагогическими условиями развития логического мышления у детей младшего школьного возраста является, прежде всего, использование различных средств и методов. В. А. Сухомлинский писал: «…Не обрушивайте на ребёнка лавину знаний…- под лавиной знаний могут быть погребены пытливость и любознательность. Умейте открыть перед ребёнком в окружающем мире что-то одно, но открыть так, чтобы кусочек жизни заиграл перед детьми всеми цветами радуги. Открывайте всегда что-то недосказанное, чтобы ребёнку хотелось ещё и ещё раз возвратиться к тому, что он узнал». «Плохой учитель преподносит истину, хороший — учит ее находить», — писал Ф. -А. Дистервег. Очень важно, чтобы способ мышления учащихся основывался на исследовании, поисках, чтобы осознанию научной истины предшествовало накопление, анализ, сопоставление и сравнение фактов [16, с. 158]. «Любой метод плохой, — писал А. Дистервег, — если приучает ученика к простому восприятию или пассивности, и хороший в той мере, в какой пробуждает в нем самодеятельность». Процесс обучения предполагает целенаправленное управление мыслительной деятельностью учащихся, что приводит к продвижению учеников в их умственном развитии. Развитие происходит в деятельности, поэтому необходимо создавать ученикам условия соответствующей деятельности, нужно демонстрировать сложную картину поиска решения, всю трудность этой работы. В этом случае ученики становятся активными участниками процесса поиска решения, начинают понимать источники возникновения решения. Как результат, ими легче осваиваются причины ошибок, затруднений, оценивается найденный способ решения и ход логических мыслей, а без этого знания не могут перейти в убеждения. Системное развитие логического мышления должно быть неотрывно от урока, каждый ученик должен принимать участие в процессе решения не только стандартных заданий, но и задач развивающего характера (активно или пассивно) [10, c. 45]. Необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию логического мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности. Эффективное развитие логического мышления у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов, а также геометрического материала. В качестве средств развития логического мышления могут выступать занимательные задачи (задачи «на соображение», головоломки, нестандартные задачи, логические задачи). Как известно, развитие ребенка происходит только в процессе деятельности; чем активнее деятельность, тем успешнее развитие[16, c. 67]. Следовательно, логическое мышление не может развиваться вне активной деятельности самого школьника и не получит своего развития без его собственных усилий. Это означает, что важнейшее условие развития логического мышления младших школьников – вовлечение их в активную поисковую деятельность. Таким образом, можно сделать вывод, о том, что для полноценного развития мышления обучающихся следует создавать такие условия, при которых им будет интересно учиться, познавать что – то новое, разбираться в различных задачах, явлениях, логически строить решение, поэтапно, самостоятельно приходить к выводу, в итоге развивая все мыслительные операции, а этому могут способствовать такие системы обучения, в основе которых лежат такие понятия как самостоятельность, вариативность, способствующие самореализации обучающихся, развитию личности. Мышление – это процесс познавательной деятельности индивида, характеризующийся обобщенным и опосредствованным отражением действительности. Логика мышления не дана человеку от рождения. Ею он овладевает в процессе жизни, в обучении. Поэтому необходимо создавать такие условия, которые способствовали бы наиболее эффективному развитию логического мышления у детей младшего школьного возраста. 2. Практико-ориентированное исследование развития конструктивного мышления при решении математических задач с использованием геометрического материала у младших школьников на уроках математики 2. 1. Методика практико-ориентированного исследования развития конструктивного мышления для решения математических задач использованием геометрического материала у младших школьников на уроках математике Одной из целей начального обучения математике является освоение окружающего пространства, развитие логики школьника, развитие пространственных представлений. Этому служит изучение геометрического материала: знакомство с телами, поверхностями, линиями, выделение фигур определённой формы, некоторых характеристик этих фигур. Геометрический материал не выделяется в качестве самостоятельного раздела. «Положение геометрии по сравнению с другими школьными предметами в своём роде уникально: ни один предмет первоклассники так не готовы воспринимать, как наглядную геометрию. В тоже время ни один предмет не начинают изучать в школе с таким запозданием (по отношению к благоприятному моменту), как геометрию» И. Ф. Шарыгин Геометрическое мышление в основе своей есть мышление образное, чувственное, физиологически связанное с полушариями головного мозга. Только по мере развития геометрического мышления происходит возрастание логической составляющей и, соответственно, роли левого полушария. Для детей с преимущественным развитием правого полушария изучение геометрии в возрасте 8- 9 лет исключительно важно в прямом физиологическом смысле[7, c. 118]. Изучение геометрического материала в начальных классах должно протекать с учетом принципа преемственности в изучении материала, т. е. строится с учетом знаний, полученных детьми в дошкольном детстве. Первоклассники уже знают названия геометрических фигур, однако используемые ими термины нередко оторваны от реальных представлений. В связи с этим при отборе геометрического материала полезно опираться на запас терминов, имеющихся у детей и проводить работу по раскрытию их научного содержания, т. е. выявлять их существенные признаки, учить узнавать фигуру не по ее наглядному образу, а по совокупности существенных признаков. Для этой цели хороши упражнения с использованием логической операции подведения под понятие. Например: «В конверте лежит фигура, у которой четыре прямых угла. Будет ли эта фигура квадратом? ». Учитывая психологические особенности развития ребёнка предшкольного возраста, его жизненный опыт (он рисует, конструирует, лепит и т. д. ), который накапливается именно в трёхмерном пространстве, изучение геометрии должно идти по второму пути – по пути фузионизма. Это направление нашло своё отражение в начальных курсах геометрии, преподаваемых в школах XVIII и XIX вв. Работа с геометрическими объектами позволяет активно использовать наглядно-действенный, наглядно-образный и наглядно-логический уровни мышления, которые наиболее близки младшим школьникам. Младшие школьники проявляют большой интерес к изучению геометрического материала, легко запоминают названия геометрических фигур и выделяют их свойства в процессе практических действий с ними. Поэтому перечень геометрических понятий, с которыми они знакомятся, можно расширить, включив в программу такие понятия, как «шар», «круг», «окружность», «симметрия». Это положительно скажется как на развитии пространственного мышления ребенка, так и на формировании навыков работы с линейкой, угольником, циркулем. Увеличение объёма изучения геометрического материала в начальных классах, способствует более эффективной подготовке учеников к изучению систематического курса геометрии, развивая логическое, пространственное мышление и систему геометрических понятий, что позволяет снизить у школьников существенные трудности, возникающие при изучении геометрии» [3, c. 35]. С переходом на новый Федеральный Государственный Образовательный Стандарт проблема развития логического мышления стала ещё более актуальна. Теперь на первый план выходит формирование универсальных учебных действий обеспечивающих школьникам умение учиться, способность в массе информации отобрать нужное, само развиваться и самосовершенствоваться. Появились новые Федеральные образовательные стандарты общего образования второго поколения, в которых прописано, что главной целью образовательного процесса является формирование универсальных учебных действий, таких как: личностные, регулятивные, познавательные, коммуникативные. В соответствии стандартам второго поколения познавательные универсальные действия включают: обще учебные, логические, а также постановку и решение проблемы. Одной из основных целей математического образования в рамках Стандартов второго поколения является формирование логических универсальных действий (анализ и синтез объектов; классификация; обобщение; выделение существенных признаков). Реализации этой цели может и должно способствовать решение на уроках математики различного рода нестандартных логических задач, а также изучение геометрического материала.
2. 2. Выявление уровня развития конструктивного мышления при решении математических задач использованием геометрического материала у младших школьников на уроках математике
Основой формирования у детей представлений о геометрических фигурах является способность их к восприятию формы. Эта способность позволяет ребенку узнавать, различать и изображать различные геометрические фигуры: точку, прямую, кривую, ломанную, отрезок, угол, многоугольник, квадрат, прямоугольник и т. д. Для этого достаточно показать ему ту или иную геометрическую фигуру и назвать ее соответствующим термином. Например: отрезки, квадраты, прямоугольники, круги. Аналогично можно поступить с геометрическими телами, показ их моделей: это цилиндр (куб, конус и т. д. ). Такое знакомство учащихся с геометрическими фигурами позволяет им воспринимать их как целостный образ, поэтому, если изменить расположение или размер тех фигур, которые были предложены в образце, дети могут допускать ошибки. Например, в фигурах, изображенных на рисунке. Важное место занимает при изучении геометрического материала наглядность. Цель метода наглядности в начальной школе обогащение и расширение непосредственного, чувственного опыта детей, развитие наглядности, изучение конкретных свойств предметов, создание условий для перехода к абстрактному мышлению, опоры для самостоятельного учения и систематизации изученного. В начальных классах применяется естественная, рисунковая, объемная, звуковая и графическая наглядность[18, c. 89]. Средство наглядности разнообразны: предметы и явления окружающей действительности, действие учителя и учеников изображения реальных предметов, процессов (рисунков, картины), модели предметов (игрушки, вырезки из картона), символические изображения (карты, таблицы, схемы). Чтобы организовать наблюдения учеников, от учителя требуется известная осторожность. Распространенная ошибка - применение очень яркой наглядности, когда ее учебная сущность затмевается яркими красками. Неопытный учитель часто привлекает внимание детей к второстепенным деталям. Излишне разукрашивается раздаточный материал. Схема, таблица содержат цвет только для выделения смысла, но не для украшения. Наглядные методы применяются на всех этапах педагогического процесса. Их роль обеспечение всесторонних, образное восприятие, дать опору на мышление. Постоянно должна проводиться работа, связанная с наблюдением, сравниванием групп предметов. Широко должна использоваться наглядность, дидактический материал. При изучении нового материала рекомендуется такое построение урока, при котором работа начинается с разнообразных демонстраций, проводимых учителем или учеником. Применение наглядности на уроках математики при изучении геометрического материала, позволяет прочно и сознательно усвоить детям все программные вопросы [8, c. 76]. Язык математики - это язык символов, условных знаков, чертежей, геометрических фигур, схем. Дети, начиная с первого класса, пользуются при счете геометрическими фигурами (квадраты, прямоугольники, круги, отрезки и т. д. ) Геометрический прием условного обозначения вещей и их отношения рисункам, чертежом и т. п. является средством более легкого представления и запоминания изучаемого. Простейшим геометрическим изображением величины и ее частей является, так называемое, одномерное или линейные диаграммы. Вопросы геометрического содержания рассматриваются всегда, когда это оказывается возможным, в тесной связи с рассмотрением остальных вопросов курса. Однако, как это отмечено в объяснительной записке к программе, в изложении вопросов геометрии должна соблюдаться и собственная логика, подчиненная основным целям включения этого материала в курс. При ознакомлении с геометрическим материалом значительное место уделяется измерениям: дети должны находить длину отрезка (1 класс), длину ломаной, периметр данного многоугольника (2 класс), площадь прямоугольника (3 класс). При этом определения понятий детям не сообщаются (и соответственно от учащихся не требуется их знания). Вместе с тем по отношению к ряду понятий (например, по отношению к прямоугольнику, квадрату и т. д. ) указываются те существенные признаки, которые фактически отражают содержание этих понятий и дают возможность выделять соответствующие фигуры из класса фигур, относящихся к ближайшему родовому понятию («прямоугольник - четырехугольник, у которого все углы прямые», «квадрат - прямоугольник, у которого все стороны равны» и т. п. ). Дети должны научиться практически использовать соответствующие признаки при узнавании различных фигур, их классификацию. Вопросы геометрического содержания рассматриваются главным образом на основе практических работ, связанных со сгибание листа бумаги, вычерчиванием фигур и пр. Формирование элементарных навыков черчения выделяется специальное внимание. В программе указано время, когда дети должны научиться пользоваться линейкой - угольником, предусмотрено, какие простейшие построения и измерения они должны выполнять. Это вычерчивание отрезков заданной длины и измерение отрезков с помощью мерной линейки, построение на клетчатой бумаге прямоугольника (квадрата). Дети должны пользоваться циркулем для вычерчивания окружностей заданного радиуса, с центром в заданной точке, научиться строить прямой угол и прямоугольники на нелинованной бумаге с помощью чертежного угольника. Рассмотрение вопросов, связанных с измерением естественно увязывается с работой над числами и арифметическими действиями. Геометрические фигуры часто служат средством наглядной интерпретации, рассматриваемых арифметических вопросов (смысла, сложения, вычитания, умножения, деления, некоторых их свойств и т. п. ). Приобретенные знания, умение, навыки и при изучении геометрического материала находят применение не только в входе практических упражнений, но и при решение текстовых задач [1, c. 30]. Основные задачи изучения геометрического материала в 1-4 классах заключаются в том, чтобы создать у детей четкие и правильные геометрические образы, развить логическое мышление и пространственные представления, вооружить их навыками черчения и измерения, имеющими большое жизненно - практическое значение, и тем самым подготовить учеников к успешному изучению систематического курса геометрии. Формирование геометрических представлений является важным разделом умственного воспитания, политехнического образования, имеют широкое значение во всей познавательной деятельности человека. Какое содержание вкладывается в понятие пространственное представление? Надо иметь в виду, что пространственные представления носят синтетический характер, включая форму, положение, величину, направление и другие пространственные отношения и связи. Задача развития у младших школьников геометрических представлений, способности к обобщению состоит в том, чтобы научить их видеть геометрические образы в окружающей обстановке, выделять их свойства, конструировать, преобразовывать и комбинировать фигуры, изображать их на чертеже, выполнять в необходимых случаях измерения. В соответствии с программой начальных классов дети знакомятся с прямой линией, отрезком, измерением и вычерчиванием отрезков, с их разностным и кратким сравнением, с углами (прямой, тупой, острый), с прямоугольником, квадратом и их свойствами, с вычислениями их периметров и площадей, с геометрическими телами: кубом и прямоугольным параллелепипедом; с их некоторыми свойствами, с вычислением их объемов. Программой предусмотрено провешивание и измерение прямой линии, проведение измерительных работ на местности [4, c. 112]. Общее направление, в котором должно проходить изучение геометрического материала формулировано в объяснительной записке к программе: «процесс изучения геометрического материала» должен быть от начала до конца активным, конкретным, наглядным. Все обучение следует сопровождать практическими упражнениями. При этом учащиеся будут воспринимать не только готовые геометрические фигуры и тела, они сами будут создавать и воспроизводить изучаемые геометрические формы, используя для этого вырезание и наклеивание, моделирование, вырезание разверток и склеивание, черчение, образование фигур на подвижных моделях, а так же путем перегибания листа бумаги. Полученные знания сейчас же используются детьми на практики, а не только на уроках арифметики, когда находят периметр, площадь и др., но и на уроках труда, рисование, в работе на школьном учебно-опытным участке, на уроках природоведения. В этих указаниях большое значение придается наглядности, практическим работам. И это правильно; вторая сигнальная система развивается на основе первой, поэтому при первоначальном знакомстве учащихся с геометрией не обходимо обращаться к наглядности, конкретным геометрическим образам. Наглядности и практические работы учеников должны преследовать не только узко - практические цели, но и развития кругозора детей, способности обобщения и абстрагированию, развитие геометрических представлений и геометрического воображения. Одним из важных методических принципов изучения геометрического материала, является связь его с другими предметами: с арифметикой, рисованием, трудом, поведением. Вопрос об использовании геометрических объектов при изучении арифметики разработал П. А. Компанийцем в книге «Особенности преподавании геометрии в тесной с арифметикой в 1 - 4 классах». В геометрической форме излагается порядок выполнения арифметических действий и многие другие вопросы арифметики. Опыт П. А. Компанийца интересен как одна из возможностей установления органической связи арифметики с геометрией. На уроках рисования непосредственно используются элементы геометрии. Эти уроки носят в ряде случаев подготовительный характер. Они помогают накоплению факторов и наблюдений, которые должны быть использованы в геометрии. При изучении всех учебных предметов идет накопление геометрических представлений о формах предметах, их взаимном расположении. Задача состоит в том, чтобы координировать все эти виды работ, которые служат одной цели. В первом классе в основном завершается первоначальное ознакомление с фигурами и их названиями. Это делается на основе рассмотрения окружающих вещей, готовых моделей и изображений фигур. У детей постепенно вырабатывается схема
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|