Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Законы термодинамики , как основа существования систем. Особенности энергетики диссипативных систем




Понятие о геоэкологии

Геоэкология — комплексная наука на стыке экологии, геологии, геохимии, биологии и географии. Зарождение геоэкологии связывают с именем немецкого географа К. Тролля, который ещё в 30-х годах прошлого века понимал под ней одну из ветвей естествознания, объединяющую экологические и географические исследования в изученииэкосистем. По его мнению, термины «геоэкология» и «ландшафтная экология» являются синонимами. В России широкое использование термина «геоэкология» началось с 1970-х годов, после упоминания его известным советским географом В. Б. Сочавой. Как отдельная наука окончательно сложилась в начале 1990-х годов ХХ века.Однако, чёткого и общепринятого определения этот термин до сих пор не получил, предмет и задачи геоэкологии также формулируются по-разному, зачастую весьма разнородно. В самом общем случае они сводятся в основном к изучению негативных антропогенных воздействий на природную среду.В рамках широкого понятия «геоэкология» находятся многие весьма разнообразные научные направления и практические проблемы. В связи с тем, что геоэкология охватывает многообразные аспекты взаимодействия общества и природы, наблюдается различная трактовка её предмета, объекта и содержания, не определен круг вопросов геоэкологических исследований, не существует общепризнанной методологии и терминологической базы.

Основные направления исследования геоэкологии

Можно выделить по меньшей мере два крупных направления в понимании термина «геоэкология», предмета, целей и задач этой науки:

1 Геоэкология рассматривается, как экология геологической среды. При таком подходе геоэкология изучает закономерные связи (прямые и обратные) геологической среды с другими составляющими природной среды — атмосферой, гидросферой, биосферой, оценивает влияние хозяйственной деятельности человека во всех её многообразных проявлениях и рассматривается как наука на стыке геологии, геохимии, биологии и экологии.

2 Геоэкология трактуется как наука, изучающая взаимодействие географических, биологических (экологических) и социально-производственных систем. В этом случае геоэкология изучает экологические аспекты природопользования, вопросы взаимоотношений человека и природы, для неё характерно активное использование системной и синергетической парадигм, эволюционного подхода. Здесь геоэкология рассматривается как наука на стыке географии и экологии.

Существует и ряд других воззрений на геоэкологию. Так, можно выделить различные трактовки в зависимости от того, какую науку (географию или экологию) автор принимает за основу геоэкологии. Ряд авторов рассматривает геоэкологию как экологизированную географию, изучающую приспособление хозяйства к вмещающему ландшафту. Другие — частью экологии, в которой изучаются последствия взаимодействия биотических и абиотических компонентов.

Многие учёные считают геоэкологию результатом современного развития и синтеза целого ряда наук: географических, геологических, почвенных и других. Эти авторы выступают за широкое понимание геоэкологии как интегральной науки экологической направленности, изучающей закономерности функционирования антропогенно измененных экосистем высокого уровня организации.

Общие понятия о геоэкосистемах. Их структура, взаимосвязь составляющих элементов.

Географическая система (геосистема) (др.-греч. γε, - Земля и др.-греч. σύστημα, - целое, составленное из частей) — фундаментальная категория географии и геоэкологии, обозначающая совокупность компонентов географической оболочки, объединённых потоками энергии и вещества. В целом, это понятие очень близко к понятию экосистемы или геобиоценоза.

Понятие «геосистема» в советскую науку ввёл академик Сочава. Поскольку практически все географические науки в той или иной степени занимаются вопросами взаимодействия компонентов природной среды, существует довольно много понятий, близких к понятию геосистемы.

Геосистема — относительно целостное территориальное образование, формирующееся в тесной взаимосвязи и взаимодействии природы, населения и хозяйства, целостность которого определяется прямыми, обратными и преобразованными связями, развивающимися между подсистемами геосистемы[1]. Каждая система обладает определенной структурой, которая формируется из элементов, отношений между ними и их связей с внешней средой. Элемент — это основная единица системы, выполняющая определенную функцию. В зависимости от масштаба («уровня разрешения»), элемент на определенном уровне представляет собой неделимую единицу. При увеличении уровня разрешения исходный элемент утрачивает свою автономность и становится источником элементов новой системы (подсистемы). Такой подход наиболее важен в географии, оперирующей территориальными системами разных масштабов.

Каждый элемент системы и система в целом характеризуется определенными свойствами. Адекватное познание системы зависит от цели конкретного исследования и определения на этой основе множества наиболее существенных свойств. Исчерпывающе описать систему только через свойства невозможно, в связи с чем важной задачей любого системного исследования является определение ограниченного, конечного множества свойств. Это же относится к отношениям между элементами системы.
Геосистемы обладают огромным количеством свойств. Главными из них являются: а) целостность (наличие единой цели и функции); б) эмерджентность (несводимость свойств системы к сумме свойств отдельных элементов); в) структурность (обусловленность поведения системы ее структурными особенностями); г) автономность (способность создавать и поддерживать высокую степень внутренней упорядоченности, то есть состояние с низкой энтропией); д) взаимосвязанность системы и среды (система формирует и проявляет свои свойства только в процессе взаимодействия с внешней средой); е) иерархичность (соподчиненность элементов системы); ж) управляемость (наличие внешней или внутренней системы управления); з) устойчивость (стремление к сохранению своей структуры, внутренних и внешних связей); и) множественность описаний (в силу сложности систем и неограниченного количества свойств их познание требует построения множества моделей в зависимости от цели исследования); к) территориальность (размещение в пространстве — это главное свойство систем, рассматриваемое географией); л) динамичность (развитие систем во времени); сложность (качественные и количественные различия ее элементов и атрибутов).

Законы термодинамики, как основа существования систем. Особенности энергетики диссипативных систем

Термодинамика - наука, изучающая законы превращения энергии и особенности процессов этих превращений.

В основу термодинамики положены основные законы или начала.

1НТ характеризует собой количественное выражение закона сохранения и превращения энергии: «энергия изолированной системы при всех изменениях происходящих в системе сохраняет постоянную величину».

2НТ характеризует качественную сторону и направленность процессов, происходящих в системе. Второе начало термодинамики отражает принципы существования абсолютной температуры и энтропии, как функций состояния, и возрастания энтропии изолированной термодинамической системы. Важнейшим следствием второго начала является утверждение о невозможности осуществления полных превращений теплоты в работу.

3НТ (закон Нерста) гласит о том, что при абсолютном нуле температур все равновесные процессы происходят без изменения энтропии.

Метод термодинамики заключается в строгом математическом развитии исходных постулатов и основных законов, полученных на основе обобщения общечеловеческого опыта познания природы и допускающих прямую проверку этих положений во всех областях знаний

Система–тело или совокупность тел, нах-ся в мех.и тепл.взаимодействии

Системы делятся на закрытые и открытые системы.

Закрытая система–система, в которой количество вещества остаётся постоянным при всех происходящих в ней изменениях.

Закрытые системы делятся на изолированные и неизолированные системы.

Изолированная система – система, у которой нет энергетического взаимодействия с внешней средой.

Гомогенная - система, состоящая из одной фазы вещества или веществ.

Однородная - гомогенная система, неподверженная действию гравитационных, электромагнитных и других сил и имеющая во всех своих частях одинаковые свойства.

Гетерогенная - система, состоящая из нескольких гомогенных частей (фаз), отделенных поверхностью раздела.

Равновесным состоянием системы-состояние системы, которое может существовать сколь угодно долго при отсутствии внешнего воздействия.

Термодинамическая система – объект изучения термодинамики – система, внутреннее состояние которой может быть описано независимых переменных, которые называются параметрами состояния.

5 основные энергетические потоки на нашей планете

Жизнь на Земле существует за счет солнечной энергии. Свет — единственный на Земле пищевой ресурс, энергия которого, в соединении с углекислым газом и водой, рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими питаются плотоядные и т. д., в конечном итоге растения «кормят» весь остальной живой мир, т. е. солнечная энергия через растения как бы передается всем организмам.
Энергия передается от организма к организму, создающих пищевую, или трофическую цепь:отавтотрофов, продуцентов (создателей) к гетеротрофам, консументам (пожирателям) и так 4—6 раз с одного трофического уровня на другой.
Трофический уровень — это место каждого звена в пищевой цепи. Первый трофический уровень — это продуценты, все остальные — консументы. Второй трофический уровень -— это растительноядные консументы; третий — плотоядные консументы, питающиеся растительноядными формами; четвертый — консументы, потребляющие других плотоядных, и т. д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т. д. порядков (рис. 5.4).
Четко распеределяются по уровням лишь консументы, специализирующиеся на определенном виде пищи. Однако есть виды, которые питаются мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.
Пища, поглощаемая консументом, усваивается не полностью — от 12 до 20% у некоторых растительноядных, до 75% и более у плотоядных. Энергетические затраты связаны прежде всего (рис. 5.5) с поддержанием метаболических процессов, которые называют тратой на дыхание, оцениваемая общим количеством С02, выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питательных веществ, т. е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и особенно при активной мышечной работе. В конечном итоге вся энергия, использованная на метаболизм, превращается в тепловую и рассеивается в окружающей среде.
Таким образом, большая часть энергии при переходе с одного трофического уровня на другой, более высокий, теряется приблизительно потери составляют около 90%: на каждый следующий уровень передается не более 10% энергии от предыдущего уровня. Так, если калорийность продуцента 1000 Дж, то при попаданиии в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т. е. 0,1 % от калорийности растительной пищи.
Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Но конечный итог: рассеивание и потеря энергии, которая, чтобы существовала ясизнъ, должна возобновляться.
Нельзя забывать еще и мертвую органику, которой питает- ся значительная часть гетеротрофов. Среди них есть и сапро-фаги и сапрофиты (грибы), использующие энергию, заключенную в детрите. Поэтому различают два вида трофических цепей: цепи выедания, или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных.
Таким образом, входя в экосистему, поток лучистой энергии разбивается на две части, распространяясь по двум видам трофических сетей, но источник энергии общий — солнечный свет.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...