Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Образование земных и внеземных веществ




 

Геохимические процессы на Земле, происходящие в недрах Земли и на ее поверхности, представляют собой превращения сложных соединений и смесей, состоящих из кристаллических и аморфных фаз. Многие из них протекают при очень высоких давлениях и температурах. Современные технические средства эксперимента позволяют воспроизвести в лаборатории условия близкие к условиям внутри Земли и даже земного ядра. Природные процессы: кристаллизация, частичное растворение, изменение структуры минералов (метаморфизм), выветривание и т. п. – приводят к образованию рудных отложений или к их разрушению и рассеянию.

Большой интерес представляют метеориты: они дают необходимую информацию об эволюции небесных тел, находящихся на разных стадиях развития. При этом важную роль играет анализ изотопного состава многих металлов и газообразных веществ, найденных в метеоритах.

Химия внесла существенный вклад в исследование космического пространства они уже внесли и продолжают вносить. Без ракетного топлива и материалов, способных выдержать огромное давление, высокую температуру и интенсивное космическое излучение, без электрохимических источников энергии, без разнообразных химических средств для обеспечения питания космонавтов и устранения отходов мы сегодня смотрели бы на Луну из нашего прекрасного далека. Космос с давних пор стал объектом химических исследований. На стыке химии и астрофизики зародилась новая отрасль естествознания – космохимия, изучающая состав космических тел, законы распространенности элементов во Вселенной.

Первые результаты о химическом составе небесных тел были получены с помощью спектрального анализа. В химических лабораториях, кроме того, исследовался состав метеоритного вещества. Состав метеоритов оказался единообразным, как если бы они происходили из одного итого же рудника. До сих пор ни в одном метеорите не найден элемент, который не встречался бы на Земле. С помощью самых точных методов анализа в метеоритах обнаружены почти все известные на нашей планете элементы. Характерная особенность большинства метеоритов заключается в том, что они содержат много чистого железа и очень мало наиболее распространенного на Земле кварца. Вещества, которые указывали бы на существование жизни в космосе, пока не найдены, хотя углерод обнаружен в виде крошечных алмазов, графита и аморфного угля. Относительно недавно появилось сообщение об обнаружении бактериоподобной структуры в метеорите с Марса (см. рис. 6.5), что является предметом дальнейшей дискуссии о существовании жизни на данной планете в далеком прошлом.

 

 

Рис. 6.5. Бактериоподобная структура

 

Наиболее часто встречающиеся каменные метеориты, как и большинство земных пород, состоят в основном из силиката магния.

Железные метеориты содержат до 90% железа. Содержание никеля в них составляет 6–20%. Кроме того, метеориты содержат кобальт, медь, хром, фосфор, серу, платину, палладий, серебро, иридий, золото и другие элементы. Встречаются включения газов: водорода, оксида и диоксида углерода.

Прямая геологическая разведка небесных тел началась 21 июля 1969 г., когда люди впервые ступили на поверхность Луны и отобрали пробы лунного грунта. Через год с небольшим прилунилась первая автоматическая станция «Луна-16», возвратившаяся на Землю с образцами лунной породы. Немного позднее, в ноябре 1970 г. на Луну доставлена советская автоматическая станция «Луноход-1», которая, начав свое движение по Луне с северо-западного Моря дождей, обследовала за 321 сутки около 50 га лунной поверхности. Обследования проводились и днем, и ночью при температурах от –140 до + 130° С. Результаты анализа показали, что за исключением несколько повышенного содержания в них тугоплавких соединений титана, циркония, хрома и железа, лунные породы по своему составу очень похожи на земные. Некоторые различия выявились не в составе, а в свойствах. Так, например, лунное железо ржавеет медленнее, чем земное. В верхнем слое лунного грунта обнаружен удивительный минерал, получивший название реголит; теплопроводность которого значительно меньше теплопроводности лучших земных теплопроводных веществ.

Исследовались и другие космические объекты. Так, с помощью космического зонда, отправленного к Венере, в результате гамма-спектрального анализа установлено, что грунт Венеры по химическому составу соответствует граниту.

Материя, находящаяся в межзвездном пространстве, состоит из двух компонентов – межзвездного газа и межзвездной пыли. Наиболее распространены в космическом пространстве водород (70 масс. %) и гелий (28 масс. %). В газовых межзвездных облаках обнаружено более 20 химических компонентов. Наряду с простыми молекулами (СО, Н2, HCN, H2O, NH3) в 200 космических газовых скоплениях найдены и более сложные химические соединения – метанол, изоциановая кислота, формамид, формальдегид, метилацетилен и ацетальдегид. Относительно недавно обнаружены молекулы этилового спирта, муравьиной кислоты и других соединений.

Исследования космохимии носят преимущественно познавательный характер, но нельзя исключать, что в будущем они обретут практическую значимость. Тем не менее уже получены некоторые важные для практики результаты. Например, для химико-фармацевтической промышленности представляет практический интерес более интенсивное развитие бактериальных культур в невесомости, чем на Земле. Металлурги могут ожидать разработки сплавов с новыми свойствами. Весьма перспективно выращивание в космосе бездефектных монокристаллов, особенно оксидов металлов. Следует ожидать, что в XXI в. появится новая отрасль науки – химия синтеза в космосе.

 

Природные запасы сырья

 

Запасы и потребление сырья

 

Основная масса сырья для химической промышленности добывалась и добывается из недр земной коры. Доступная современным средствам массовой добычи толщина верхнего слоя земной коры составляет от 1 до 2 км. И в таком сравнительно тонком слое содержится не менее 20 000 блн т железа, 40 блн т меди, 48 блн т цинка, 7,2 блн т свинца и т. п. Почти 98,6 % поверхностного, физически доступного слоя земной коры составляет вещество, состоящее из всего лишь восьми химических элементов: кислород (47,0%), кремний (27,5%), алюминий (8,8%), железо (4,6%), кальций (3,6%), натрий (2,6%), калий (2,5%) и магний (2,1%). Среднее содержание химических элементов в земной коре хотя и абсолютно велико, но слишком мало для рентабельной повсеместной добычи ввиду их рассеянности. Рентабельны лишь месторождения, где сосредоточены существенные запасы тех или иных полезных ископаемых. Такие месторождения встречаются редко, и они неравномерно распределены по земному шару. Ни одна страна на планете не располагает всеми нужными видами сырья в достаточном количестве. В то же время на территории России находятся многие наиболее важные виды ценного природного сырья.

Многие промышленно развитые страны вынуждены ввозить сырье. Например, в США около 1/3 потребностей в марганце, хроме, кобальте, олове и 90% потребности в алюминиевом сырье удовлетворяются за счет импорта. Все большее количество свинца, цинка и вольфрама, железной руды и меди в этой стране также становится предметом импорта.

Запасы сырья, добываемых с помощью современных технических средств во всем мире, быстро исчерпываются. Ресурсы Земли хотя и очень велики, но ограничены, поэтому человеческое общество не сможет долго развиваться на основе традиционных методов добычи сырья. Химические элементы в природе, как они интенсивно бы не эксплуатировались, не уничтожаются, а переходят в другие соединения, мало пригодные для экономического оборота.

Решающую роль в сбережении природных ресурсов должны сыграть не только новые способы добычи, но и новейшие химические технологии, которые позволят применять более доступное и дешевое сырье с необычным элементным составом. Можно привести не один пример, когда новые химические технологии спасали от кризиса промышленное производство. Так было с производством стекла. Содовая технология, предложенная в 1789 г., направила в новое русло производство стекла во Франции, для которого применялось ранее калиевое сырье, вырабатываемое из древесины, что привело к почти полному истреблению лесных массивов во Франции.

Более 80% мировых сырьевых ресурсов и топлива потребляются в наше время только 1/3 частью населения Земли. Потребность в сырье очень быстро растет не только в развивающихся, но и в промышленно развитых странах. Такую возрастающую потребность могут удовлетворить:

· разработка новых месторождений, в том числе и морских шельфов, и добыча сырья, содержащегося в морской воде;

· освоение бедных месторождений;

· утилизация отходов;

· замена дефицитного сырья.

Весьма перспективен для добычи морской шельф, находящийся на глубине до 200 м. Подводные континенты, общая площадь которых чрезвычайно велика, в ближайшем будущем станут источником многих видов сырья.

 

Металлы

 

В недрах Земли содержится достаточно большое количество металлов, но их доля в тех соединениях, из которых они могут быть извлечены для промышленных целей, весьма ограничена. При современных масштабах добычи, по предварительным оценкам, основные запасы таких металлов, как свинец, медь, золото, цинк, олово, серебро и уран, уже в ближайшие десятилетия могут быть исчерпаны. В то же время железо, марганец, хром, никель, молибден, кобальт и алюминий будут добываться в достаточном количестве даже в середине XXI в.

Самое необходимое, важное и широко потребляемое из всего металлического сырья – железо – четвертый по распространенности в земной коре элемент. Его общие запасы составляют около 12 блн т. Надежно разведанные и используемые мировые запасы составляют только примерно 100 млрд. т. Наибольшими запасами железных руд располагают Россия (примерно 40% всех руд), Австралия, Канада, США и Бразилия. В одной только Курской магнитной аномалии сосредоточено около 30 млрд. т железных руд, т. е. почти 1/3 мировых запасов.

Медь – второй по практической значимости металл. Ежегодная потребность меди – 50 млн. т. Если учесть, что запасы меди в известных месторождениях составляют 210–250 млн. т, а всего может быть добыто 1–2 млрд. т, то можно предположить, что в ближайшем будущем запасы меди будут исчерпаны. Около 37% месторождений меди находится в Чили.

Медь как электропроводящий материал может быть заменена легким металлом – алюминием, занимающем третье место по распространенности в земной коре. Хотя в целом запасы алюминия велики – около 8,8% массы земной коры, однако только 0,008% этой массы содержится в бокситах, мировые запасы которых оцениваются в 6 млрд. т. Примерно 1/3 таких запасов сосредоточена в Австралии. При ежегодном производстве алюминия 15–30 млн. т и темпах его роста до 9% запасов бокситов хватит надолго. Тем не менее в настоящее время разрабатываются методы промышленного извлечения алюминия из повсеместно распространенных и практически неисчерпаемых пород: глины, алюмосиликатов вулканических пород, содержащих до 10% алюминия.

Запасы другого важнейшего легкого металла – магния – достаточно велики – около 2,1% массы земной коры. С учетом сегодняшних потребностей запасов магния хватит на долгое время.

В обыденной жизни относительно редко встречаются такие металлы, как титан, неодим, литий, рубидий, европий, тантал и другие, но в природе они не так уж редки. Например, природные запасы рубидия примерно в 45 раз больше, чем свинца. Слово «редкий» часто означает, что тот или иной металл добывается в относительно небольших количествах, так как известны очень небольшие пригодные для рентабельной разработки его месторождения. Названные металлы – перспективные материалы для новой техники.

Титан – коррозионностойкий материал. Иногда его считают достойным соперником алюминия и стали. Применение титана в химической промышленности за последние десятилетия резко возросло. Тантал – необходимый компонент особо прочных кислото- и термостойких сплавов. Платина, палладий и родий широко применяются в качестве катализаторов. Существенная часть родия и палладия извлекается из радиоактивных отходов. Таким же способом можно получить теллур-99 – весьма ценный материал для производства сверхпроводников и предотвращения коррозии металлов и сплавов. Например, при весьма незначительной концентрации (до 0,1 мг/л) теллура железные изделия не ржавеют ни в водных, ни в солевых растворах даже при повышенной температуре.

Предполагается, что для добычи сырья некоторых металлов уже в ближайшем будущем существенно возрастет объем работ под водой – на морском шельфе. На глубине меньше 130 м находятся обогащенные морские отложения, содержащие благородные и тяжелые металлы: олово, золото, платину, железо, вольфрам, хром и др. Например, железные и марганцевые тихоокеанские конкреции содержат в среднем около 25% марганца и железа, а никель, медь, кобальт и титан в концентрациях составляют 1,5–3,5%. Общие запасы данных конкреций – более 1500 млрд. т, при ежегодном пополнении в 10 млн. т.

В морских водах Земли растворены около 4,5 млрд. т урана, примерно по 3 млрд. т марганца, ванадия и никеля, 6 млрд. т золота (около 1 т на каждого жителя планеты!). Однако концентрация их сравнительно мала. Тем не менее, если в будущем промышленное опреснение морской воды будет производиться в больших масштабах, то отходы солей, обогащенные в 3–4 раза, могут стать сырьем, вполне пригодным для извлечения содержащихся в нем металлов.

 

Неметаллическое сырье

 

Если металлы представляют практический интерес преимущественно в элементном состоянии, то неметаллы – сера, фосфор, азот, кислород, хлор и др. – ценны в образуемых ими соединениях. Несмотря на возрастающий спрос на различные химические продукты, огромные запасы неметаллического сырья вполне достаточны для обеспечения химической промышленности в течение относительно длительного периода времени.

Кроме элементной серы и серной руды – пирита (FeS2), широко применяемого для производства серы, многие содержащие серу минералы встречаются в больших количествах и во многих местах земной поверхности. К рентабельной можно отнести добычу и переработку гипса (CaSO4 · 2Н2О), ангидрита (CaSO4) и кизерита (MgSO4·H20). В перспективе баланс серы будет сохранен в результате переработки отходящих газов сернистых производств, количество серы в которых существенно превышает потребности промышленности.

Доступные для разработки современными средствами фосфорные месторождения содержат около 60 млрд. т фосфорного сырья Р2О5. Около 2/3 промышленной фосфорной продукции приходится на страны бывшего СССР и США.

Один из важнейших видов неметаллического сырья – азот. Он входит в состав белков, широко применяется для производства удобрений и других промышленных продуктов. Хотя в земной коре доля азота сравнительно мала (около 0,03%) и его расходы относительно велики, проблема истощения вряд ли возникнет, поскольку окружающая нас атмосфера содержит около 78% азота.

Не менее важным химическим сырьем является кислород. Многие химические реакции – процессы окисления – протекают при прямом или косвенном участии этого элемента. Кислород – это самый распространенный элемент. Его доля в земной коре составляет приблизительно 47%. Однако значительная часть кислорода связана в виде различного рода оксидов, в том числе и продуктов сгорания. Атмосферный кислород составляет лишь около 0,013% общего количества. Этого достаточно для полного превращения в оксид углерода органической массы углерода, которая примерно в 1650 раз превосходит ныне существующую. Запасы кислорода постоянно обновляются благодаря процессам жизнедеятельности растений. Например, 1 га леса поставляет около 60 т кислорода в год. Кислород пополняется и при ультрафиолетовом расщеплении паров воды в атмосфере.

С увеличением объема производства соляной кислоты и винилхлорида потребность в следующем неметаллическом сырье – хлоре – постоянно возрастает. Запасы хлорного сырья вполне достаточны. Огромное количество хлора имеется в соляных залежах и в морской воде, 1 т которой содержит 30 кг соли NaCl.

Все большее практическое значение для развития общества приобретают искусственные строительные материалы: гипс, цемент, бетон и др. Необходимое для таких материалов сырье (песок, гравий, щебень, глина, галька, известняк, доломит) имеется в сравнительно больших количествах повсеместно. Проблема заключается не в количестве сырья, а в его территориальном расположении.

Для производства большинства химических продуктов требуется вода. Она служит растворителем, теплоносителем и исходным сырьем для получения кислорода и водорода. Химическая промышленность при 25%-ом общем потреблении воды промышленными предприятиями занимает второе место после энергетики.

Каковы же водные ресурсы нашей планеты? Океаны, моря, реки, озера и лед покрывают около 75% поверхности Земли. Если все количество воды, по некоторым оценкам составляющее 1386 млн. м3, равномерно распределить по поверхности земного шара, то толщина слоя воды окажется равной примерно 2700 м. На долю же пресной воды в такой водяной массе приходится всего 2,5%. Расходуется лишь небольшая часть пресной воды, совершающей непрерывный круговорот в природе. В то же время водные ресурсы неравномерно распределены, и часть их находится в непригодном для непосредственного потребления состоянии из-за большого содержания минеральных солей (что определяется природными условиями) и из-за высокой степени загрязнения. Поэтому водоснабжение населения сопряжено с проблемами транспортировки, очистки и сохранения чистоты природных вод.

 

Углерод

 

Углерод по распространенности в природе занимает тринадцатое место. На его долю приходится 0,087% массы земной коры, или 20 000 блн т, из которых около 99,5% содержится в карбонатных породах (карбонатах кальция и магния); 0,47% составляет диоксид углерода в атмосфере и в воде, 0,02% приходится на уголь, нефть и газ и 0,01% – на биосферу.

Рациональное использование запасов углерода возможно при выполнении следующих условий:

· – химические технологии должны обеспечить синтез разнообразных необходимых соединенийизлюбого имеющегося углеродного сырья;

· – для химической промышленности следует применять огромные запасы повсеместно встречающихся карбонатов;

· – для энергетики не целесообразно расходовать углерод, связанный в органические ископаемые соединения.

В действительности и энергетика, и химическая промышленность интенсивно потребляют горючие ископаемые – в основном уголь, нефть и газ. Причем получение углеводородов из нефти и газа экономически гораздо более выгодно, чем из угля. Производительность труда в нефтехимии примерно в 12–16 раз выше, чем в химии карбонатов.

Быстрыми темпами растет потребление природного газа. Он используется для производства электроэнергии, и бытовых нужд, а также как сырье для промышленного производства ацетилена, формальдегида, метанола, синильной кислоты, водорода и т. п. Общие ресурсы природного газа оцениваются в 120 000 млрд. м3, из них на территории России обнаружено около 80 000 млрд. м3. При потреблении 1500 млрдм3 в год природного газа, как полагают некоторые ученые, хватит приблизительно на 80 лет. По другим оценкам, истощение природного газа ощутиться гораздо раньше.

На смену нефти и природному газу придет уголь, и лидирующее ме сто займет химия угля. В последние десятилетия разрабатываются эффективные методы переработки угля. В частности, предложен способ эффективного производства моторного топлива из угля, объединяющий энергетические и химические установки. Запасы угля огромны, но ограничены.

Чего же следует ожидать после истощения богатых ресурсов природного газа, нефти и угля? Вероятно большее внимание будет уделяться химии карбонатов. Химические превращения карбонатов станут энергетически приемлемыми. Уже наметились пути уменьшения затрат энергии при их переработке. На стадии разработки находится каталитический метод превращения углекислого газа СО воздуха в простые органические соединения без высоких температур и давления. Не следует забывать о 2 блн т углерода, накопленного в биосфере. Растительный мир Земли можно рассматривать как непрерывно работающие химические фабрики, потребляющие энергию Солнца. При разумном хозяйствовании их продукции может хватить на продолжительный период времени. В этой связи фотосинтез как важнейший природный процесс должен стать объектом пристального внимания все большей массы населения планеты.

 

Вторичное сырье

 

Полезные сырьевые запасы Земли при современных темпах их потребления быстро истощаются. Одновременно накапливается огромное количество отходов промышленных предприятий, городов и многочисленных населенных пунктов. Одна из главных задач современных промышленных и хозяйственных предприятий – включить отходы в промышленный цикл, что, естественно, будет способствовать сохранению природных ресурсов.

Среди многообразия вторичного сырья металлы занимают первое место по потреблению. За счет них покрывается существенная доля потребностей промышленности. Для разных целей используется чуть больше половины растительной массы – древесины. Ветки, пни, листья деревьев остаются в лесу, а опилки, стружка чаще всего составляют отходы деревообрабатывающей промышленности. В производстве целлюлозы лишь 1/4 общей биомассы деревьев переходит в конечный продукт, при этом теряется большое количество весьма ценных ароматических соединений. В данной связи одна из важнейших задач потребителей древесины – более эффективная переработка биомасс. Древесина служит сырьем не только для бумажной промышленности, но и для производства строительных и столярных пиломатериалов, белковой массы, активированного угля, множества медикаментов и т. п. Но все-таки относительно большая масса древесины идет на производство бумаги и картона. Отработана технология переработки использованной бумаги и картона, и их утилизация особенно важна: 50 тыс. т макулатуры экономят 120 тыс. м3 древесины и тем самым сберегают 500 га леса. К сожалению, таким ценным вторичным сырьевым материалом часто пренебрегают.

Весомый сырьевой потенциал представляют зола и шлаки, остающиеся после сжигания угля. Лишь незначительное количество таких отходов находят применение, в то время как на их ликвидацию расходуются большие средства. Определенную часть золы, например, можно было бы использовать в качестве наполнителя цемента. Так, 1,3 т золы бурого угля, извлеченной из дымовых газов, заменяет 1 т цемента. Кроме того, такая зола содержит 5–30% окиси железа, около 30% извести и заметное количество коксованного остаточного угля. Железная руда, известь и кокс – это главные сырьевые компоненты для металлургии. Следовательно, большое практическое значение имеет извлечение железа и силикатных строительных материалов из зольного и шлакового вторичного сырья.

Из нефтяных отходов в хозяйственный цикл возвращается 25–35%, хотя уровень повторного их применения может быть гораздо выше.

В настоящее время выпускаются большие объемы пластмассовой продукции. Однако не все виды пластмасс поддаются утилизации. Если полистирол, поливинилхлорид и другие пластмассы успешно возвращаются в промышленность (из них изготавливают различного рода покрытия) то полиуретан и различные искусственные волокна гораздо труднее поддаются переработке.

Сбор и переработка вторичного сырья, конечно, требуют вполне определенных капиталовложений, но следует помнить, что применение некоторых видов вторичного сырья обходится все же дешевле, чем переработка первичного сырья, т. е. сырья, накопленного в течение длительного времени в недрах Земли. Утилизация вторичного сырья, т. е. обеспечение новой жизни старым вещам, предметам и изделиям, – вовсе не признак бедности, а свидетельство, прежде всего, разумного ведения хозяйства в государственном масштабе.

 

Органическое сырье

 

Основную массу природного органического сырья, интенсивно потребляемого для производства тепла, электроэнергии и разнообразной химической продукции, составляют горючие источники: нефть, уголь, природный газ, горючие сланцы, смоляные пески, торф и биомасса. При их химическом превращении – сгорании– выделяется тепловая энергия, которая используется непосредственно для обогревания, например жилых домов и служебных помещений, и для производства электроэнергии. При этом существенную долю, например, нефтепродуктов составляет топливо для транспорта.

 

Нефть

 

В последние десятилетия потребление нефти в мире постоянно увеличивается. Потребность в нефтепродуктах продолжает возрастать (рис. 6.6). За десятилетний период с 1968 по 1978 гг. нефти было добыто столько же, сколько за предшествующие 110 лет. Значительная ее доля расходуется на производство топлива для различных энергоустановок, в том числе и для транспорта.

 

 

Рис. 6.6. Потребность в нефтепродуктах

 

Превращение исходного природного продукта – сырой нефти – включает ее добычу, переработку и сжигание. В процессе добычи сырая нефть извлекается из разведанного месторождения.

Добыча нефти осуществляется в три этапа. На первом этапе извлекается 10–30% нефти при естественном давлении из природного резервуара, заполненного сложными образованиями из пористых пород. На втором этапе добычи при накачке воды, газа или пара нефть выталкивается на поверхность, что позволяет получить до 35% разведанных запасов. Извлечение остальной части сырой нефти на третьем этапе требует новых технологических приемов. Наиболее перспективные из них связаны с применением поверхностно-активных веществ и полимерных растворителей для извлечения нефтяных фракций из водной среды. Например, на третьем этапе добычи можно извлечь более 50 млрд. т нефти, содержащейся в разведанных месторождениях только одной страны – США.

Добытая сырая нефть чаще всего представляет собой маслянистую жидкость, состоящую преимущественно из сложной смеси углеводородов-алканов с линейной структурой и, в основном, с одинарными связями. Кроме алканов, нефть содержит разветвленные и циклические углеводороды, а также соединения с одной двойной связью, т. е. алкены, и соединения с бензольными кольцами, относящиеся к ароматическому ряду. Сырая нефть включает компоненты, молекулярная масса которых находится в пределах от значений для природных газов: 14 (метан СН4), 30 (этан С2H6), 44 (пропан C3H8) и 58 (бутан С4Н10) – до значения для парафинового воска С30Н62, равного 422.

Процесс переработки нефти, называемый крекингом, начинается с перегонки, при которой различные компоненты нефти разделяются в соответствии с их температурой кипения. Вначале извлекаются наиболее летучие углеводороды, один из них октан C8H18. По октановому эквиваленту оценивается качество моторного топлива. В процессе переработки удаляются неорганические примеси, включая серу, и в результате каталитического крекинга производится расщепление больших молекул, при котором образуется соединение с более низкой температурой кипения. Для перестройки молекул и формирования их структур с оптимальными характеристиками, в том числе и для повышения октанового числа топлива, применяется каталитический реформинг. Каталитический процесс, таким образом, играет существенную роль при переработке нефти.

Лучшие катализаторы для переработки нефти – дорогостоящие и малораспространенные металлы: платина, палладий, родий и иридий. Например, с помощью катализатора – платины – алканы, приводящие к несинхронному воспламенению топлива в цилиндрах двигателя и вызывающие детонацию, превращаются в углеводороды с лучшими горючими характеристиками и с большим октановым числом. При наличии платинового катализатора и водорода низкооктановый алкан с неразветвленной цепью преобразуется в соединение бензола или циклического алкана с более высоким октановым числом.

Относительно недавно освоены новые каталитические процессы для переработки нефти, которые основаны на применении цеолитовых молекулярных сит (алюмосиликатов), платинорениевого/платино-иридиевого и платина/палладий/родиевого катализаторов. В настоящее время возрастает и особенно в будущем будет возрастать в переработке доля добываемой нефти низкого качества, т.е. нефти с относительно большой концентрацией серы, с более высокомолекулярными компонентами и с различного рода примесями, например, с примесями ванадия, никеля и других элементов, которые затрудняющих процесс катализа. В этой связи технологический цикл переработки нефти необходимо постоянно совершенствовать, чтобы производить высокооктановое топливо, продукты сгорания которого не загрязняли бы окружающую среду.

В последние десятилетия при детальном исследовании процесса горения топлива были выявлены азотнокислые и серосодержащие продукты сгорания, приводящие к кислотным осадкам, а также хлоросодержащие и другие соединения, загрязняющие атмосферу. Как выяснилось, горение – сложный химический процесс, зависящий от многих факторов. Повышение эффективности горения – это один из лучших способов сбережения природных энергоресурсов и сохранения окружающей Среды.

Переработка нефти включает операцию обессоливания и последующее разделение нефти на фракции при различных температурах кипения. Возрастающая потребность в топливе приводит к необходимости переработки нефтяных фракций. Для чего применяется термический крекинг, представляющий собой разложение нефтепродуктов при высокой температуре (выше С), при которой получается низкокипящий углеводород – бензин. Перспективен каталитический метод гидрокрекинга (под действием водорода происходит гидрофикация и тем самым отпадает необходимость в дополнительной операции очистки). На современных установках ежегодно вырабатывается более 700 тыс. т нефтепродуктов. Для повышения детонационной стойкости моторное топливо подвергается каталитической обработке при температуре 500° С и давлении 20–40 атм. Нефтехимический синтез базируется на пиролизе парафинов при температуре 800–870° С.

В результате переработке нефти получается более двух десятков основных соединений. Наиболее важные из них – олефины, диолефины (этилен, пропилен, бутадиен, изопрен), ароматические соединения (бензол, толуол, ксилол) и газовая смесь оксида углерода с водородом (см. рис. 6.7). На основе данных соединений синтезируется тысячи промежуточных и конечных продуктов. В настоящее время около 90% всех органических соединений производится из нефти и природного газа.

 

 

Рис.6.7. Процесс переработки нефти

 

О темпах развития нефтехимии можно судить по росту производства этилена – сырья для получения пластмасс, лаков и красок. За 20 лет (1960- 1980 гг.) объем этилена увеличился более чем в 10 раз (с 3,4 до 50 млн. т). Только для производства различных продуктов без учета топлива в 1975 г. было израсходовано около 100 млн. т нефти.

Вплоть до середины XIX в. нефть использовалась преимущественно как колесная мазь и в лечебных целях. В 1860г. мировая потребность в ней составляла около 70 тыс. т. К концу XIX в. она возросла до 21 млн. т, и через 75 лет – до 2730 млн. т. Разведанные запасы нефти на конец 1974 г. оценивались в 97 млрд. т. К началу 90-х годов XX в. они составили около 600 млрд. т. По некоторым оценкам, к 2000 г. разведанные запасы приблизятся к 800–1000 млрд. т. Предполагается, что запасов нефти хватит до 2050 г. при нынешних темпах потребления.

 

Уголь

 

Мировые запасы доступного для разработки угля в 20–40 раз превосходят нефтяные ресурсы. Например, в США угля в 50–100 раз больше, чем нефти. Уголь – наиболее распространенное в природе минеральное топливо, роль которого в ближайшие десятилетия будет расти по мере истощения нефтяных и газовых месторождений. В данной связи будет расти и практическая значимость фундаментальных и прикладных исследований, направленных на разработку эффективных и экологически чистых способов превращения весьма ценного угольного сырья. Экономическая широкомасштабная переработка угля в эффективное топливо позволила бы сохранить нефть для получения из нее многих ценнейших соединений, необходимых для химической промышленности. Нефть как источник многих химических продуктов слишком дорога, и ее использовать в качестве топлива нерационально. С развитием химической технологии уголь станет одним из важнейших источников сырьевых продуктов, в том числе и тех, которые уже в настоящее время получают из нефти (рис. 6.8).

 

 

Рис. 6.8. Химическое превращение угля

 

Уголь – твердое горючее, полезное ископаемое растительного происхождения – содержит, кроме углерода и водорода, серу и азот, а также некоторое количество минералов и влаги. Соотношение водород/углерод в угле примерно равно 1, что вдвое меньше, чем в бензине, поэтому как топливо уголь менее эффективен. При химическом превращении угля вначале удаляются из него сера и азот, затем отделяются неорганические примеси и, наконец, уголь превращается в жидкий: синтез-газ, представляющий собой смесь моноксида углерода и водорода.

Применение синтез-газа весьма перспективно, но его производство пока экономически не выгодно. Переработка угля может достигать крупных масштабов. Например, во время второй мировой войны в Германии, лишенной доступа к источникам нефти, в результате переработки угля было получено 585 тыс. т углеводородного топлива. Синтез-газ превращался в моторное топливо с помощью кобальтового катализатора. В недалеком прошлом ЮАР удовлетворяло около 40% своих потребностей в топливе, ежегодно получая 1750 тыс. т углеводорода из угля с применением железного катализатора. Перерабатывающие заводы располагались прямо на угольных залежах, откуда уголь конвейером загружался в химические реакторы.

 

Природный газ

 

Один из важнейших источников энергоресурсов – природный газ – представляет собой смесь углеводородов с относительно небольшой молекулярной массой. Состав природного газа весьма разнообразен. Обычно он содержит 60–80% метана, остальное приходится на этан СH4, пропан C3H8 и бутан С4H10, соотношение которых может быть различным. В природном газе есть и примеси, включающие серу, азот и другие элементы. Обычно этан и пропан каталитически превращают в этилен С2Н4, пропилен С3Н6 и ацетилен С2Н2 – ценное сырье для производства разнообразной полезной продукции.

Природный газ легко транспортируется по трубопроводу. В последние десятилетия его потребление резко возросло. Значительная доля мировых ресурсов природного газа принадлежит России. Запасы природного газа в США несколько превосходят запасы нефти. В целом источники природного газа и нефти ограничены и быстро истощаются.

 

Горючие сланцы, смоляные пески и торф

 

К одному из видов источников энергоресурсов относятся горючие сланцы – разновидность осадочных горных пород. Из них производят жидкие углеводороды. Например, согласно некоторым оценкам, только в сланцах трех штатов – Колорадо, Юта и Вайоминг содержится около 60 млрд. т углеводородов. Однако для широкомасштабной промышленной добычи горючих сланцев еще предстоит решить сложные химические, геохимические и технологические проблемы.

Горючие сланцы образовались из древних морских отложений ила и различной растительности. Кроме основной минеральной составляющей, они содержат кероген – смесь нерастворимых органических полимеров и небольшое количество

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...