Материалы, содержащие редкие металлы
⇐ ПредыдущаяСтр 7 из 7
Названия «редкие металлы», «редкие элементы», «редкоземельные элементы» не совсем удачны – их содержание в земной коре в среднем сопоставимо или даже выше, чем большинства широко используемых металлов. Например, таких редких металлов, как скандий, церий, лантан, литий, иттрий, ниобий, галлии, в земной коре содержится примерно столько же, сколько хрома, цинка, никеля, меди, свинца. А стронция, циркония, рубидия – гораздо больше. Полвека назад считали, что редкие элементынеспособны концентрироваться в рудах промышленных месторождений. Сейчас известно, что некоторые редкие элементы по концентрации в рудах не уступают и даже превосходят цветные и другие металлы. Редкие металлы находятся в острие пирамиды распространенности химических элементов поверхностного слоя земной коры (рис. 6.16).
Рис. 6.16. Пирамида распространенности химических элементов в земной коре
Долгое время не находившие широкого применения, сегодня они оказались на острие передовых технологий производства современных многочисленных перспективных материалов. С их применением связаны новые области промышленности, науки и техники – такие как гелиоэнергетика, инфракрасная оптика, оптоэлектроника, лазеры, ЭВМ последних поколений и т.п. Приведем примеры практического применения материалов, содержащих редкие металлы. Низколегированные стали, в состав которых входит всего 0,03–0,07 % ниобия и 0,01–0,1 % ванадия, позволяют на 30–40 % снизить вес металлических конструкций мостов и многоэтажных зданий, газо- и нефтепроводов, бурильного оборудования и т. п. При этом срок службы конструкций увеличивается в 2–3 раза. Магниты из сверхпроводящих материалов на основе ниобия дали возможность построить в Японии поезда на воздушной подушке, развивающие скорость 577 км/ч.
В легковом американском автомобиле используются примерно 100 кг стали с ниобием, ванадием, 25 деталей из медно-берилловых сплавов, с цирконием и иттрием. При этом вес автомобиля с 1980 по 1990 год уменьшился в 1,4 раза. С 1986г. автомобили начали оснащаться не одним содержащими магнитами. Интенсивно разрабатываются электромобили с литиевыми аккумуляторами, автомобили на водородном топливе с нитридом лантана и др. Разработаны высокотемпературные топливные элементы на основе оксидов циркония и иттрия, в которых кпд повышается до 65 %. Расход электроэнергии на освещение снижается в 2–3 раза с применением осветительных ламп с люминофорами, содержащими иттрий, европий, тербий, церий. Арсенид галлия используется в производстве фотоэлементов, интегральных схем и т. п. Применение редкоземельных материалов при крекинге нефти позволяет снизить потребление дорогостоящей платины и увеличить на 15 % выход высокооктанового бензина. Иттрий способен резко увеличить электропроводимость алюминиевого провода и прочность новых керамических конструкционных материалов. Совсем недавно обнаружилось совсем необычное свойство редких земель – при их внесении в почву повышается на 5–10 % урожаи сельскохозяйственных культур: риса, пшеницы, кукурузы, сахарного тростника, хлопка, фруктов и др. Чрезвычайно быстро растет потреблениередких металлов в станах Западной Европы и Японии. Например, в Японии за период 1960–1985 гг. потребление редких металлов возросло в 10–25 раз. Результаты исследований показывают, что ископаемое углеводородное сырье содержит промышленно-ценные количества иттрия, лантонидов, ванадия и других редких металлов, цена которых соизмерима со стоимостью самого сырья. Например, в татарской нефти содержится до 700 г/т ванадия, который является ценным, но и весьма токсичным веществом. При извлечении его из нефти решаются задачи: добывается нужный для многих целей металл и предотвращается его рассеяние в атмосфере и на почве.
Некоторые специалисты убеждены: редкие металлы – будущее новой техники. На пороге тысячелетий современная цивилизация переходит из железного века в новый – век легких и надежных материалов, содержащих редкие металлы.
Термостойкие материалы
Новые технологии изготовления той или иной продукции, как правило, базируются на конструкционных материалах, сохраняющих свои свойства за пределами нормальных условий, например, при высокой или сверхвысокой температуре. Высокая эффективность многих аппаратов, двигателей и т.п. достигается при высокой температуре, поэтому создание термостойких материалов – одна из важнейших задач развития современных химических технологий. К настоящему времени разработаны перспективные способы изготовления термостойких материалов. К ним относятся имплантация ионов на какой-либо поверхности; плазменный синтез – объединение веществ, находящихся в плазменном состоянии; плавление и кристаллизация в отсутствии гравитации; напыление на поликристаллические, аморфные и кристаллические поверхности с помощью молекулярных пучков; химическая конденсация из газовой фазы в тлеющем плазменном разряде и др. Для изменения локальных химических и физических свойств материалов применяется лазерная технология. Сфокусированный луч мощного импульсного лазера способен кратковременно (в течение 100 нс) создавать чрезвычайно высокую локальную температуру – вплоть до 10 000 К. В точке фокусировки лазерного луча в результате изменения физических и химических свойств происходит локальная модификация поверхностного слоя, в котором может образоваться сплав с заданными свойствами. В условиях конденсации газовой фазы лазерный луч может инициировать химическую реакцию. С применением современных технологий получены, например, нитрид кремния Si3N4 и силицид вольфрама WSi2 – термостойкие материалы для микроэлектроники. Нитрид кремния обладает превосходными электроизолирующими свойствами даже при небольшой толщине слоя – менее 0,2 мкм. Силицид вольфрама отличается весьма малым электрическим сопротивлением. Из данных материалов напыляются тонкопленочные элементы интегральных схем. Напыление таких термостойких материалов производится методом плазменного осаждения на менее термостойкую подложку без заметного изменения ее свойств.
Представляет практический интерес способ получения новых керамических материалов для изготовления, например, цельнокерамического блока цилиндров двигателя внутреннего сгорания. Данный способ заключается в отливке кремнийсодержащего полимера в форму заданной конфигурации с последующим нагреванием, при котором полимер превращается в термостойкий и прочный карбид или нитрид кремния. С овременные графито-волокнистые материалы, способные выдерживать температуру до 2000° С. Конечно, это не предел. Новые технологии позволяют синтезировать более термостойкие материалы.
Нитинол
Нитинол представляет собой никель-титановый сплав (55%Ti, 45%Ni), обладающий необычным свойством – сохранять первоначальную форму. Поэтому иногда его называют запоминающим металлом или металлом, обладающим памятью. Нитинол способен сохранять свою первоначальную форму даже после холодного формования и термической обработки. Для него характерны сверх- и термоупругость, высокая коррозионная и эрозионная стойкость. Поначалу нитиноловые изделия служили преимущественно для военных целей – с их помощью в боевых самолетах соединяли различные трубопроводы, доступ к которым ограничен. Соединение производилось муфтой, свободно надевашейся на концы соединяемых трубок. После пропускания электрического тока муфта нагревалась примерно на 30° С и принимала первоначальную форму с меньшим диаметром, плотно прилегая к концам трубок. Уникальную конструкцию с помощью нитиноловых муфт удалось собрать в космосе. Тогда потребовалось скорректировать орбиту станции «Мир», для чего нужно было на удалении 14 метров от нее расположить двигатель для корректировки орбиты. Монтаж сравнительно длинной мачты для крепления двигателя традиционными методами (с помощью сварки и крепежных материалов) потребовал бы длительного пребывания космонавта в космосе, что могло подвергнуть его чрезмерному космическому облучению. Нитиноловые муфты позволили быстро и легко собрать 14-метровую мачту.
Наибольшую пользу, конечно же, может принести применение нитиноловых муфт не для решения разовых космических и узконаправленных военных задач, а для народнохозяйственных целей. Ведь множество разнообразных трубопроводов проложено по бескрайним просторам нашей планеты. Это газопроводы, нефтепроводы, бензопроводы, водопроводы. Газо-, нефте- и бензопроводы, заполненные легковоспламеняющимися соответственно газом, нефтью и бензином, представляют повышенную пожароопасность, в связи с чем нельзя при их ремонте применять сварку, и все восстановительные работы приходится выполнять с помощью резьбовых соединений и крепежного материала. Данная задача гораздо упрощается с применением коррозионностойких нитиноловых муфт, которые срабатывают при пропускании через них относительно небольшого тока, при этом не требуется открытого огня. Нитиноловые фиксаторы, муфты, спирали находят применение в медицине. С помощью нитиноловых фиксаторов эффективнее соединяются сломанные части костей. Благодаря памяти формы нитиноловая муфта лучше фиксируется в десне, предохраняя места сочленений от перегрузок. Нитинол, обладая способностью упруго деформироваться на 8–10%, плавно воспринимает нагрузку, подобно живому зубу, и, в результате, меньше травмирует десну. Нитиноловая спираль способна восстановить сечение пораженного той или иной болезнью сосуда в организме человека. При внедрении нитиноловых деталей происходит более эффективное заживление ран – ведь, помимо замечательных механических свойств, нитинол еще и биологически инертен. Вне всякого сомнения, нитинол – перспективный материал, и в ближайшем будущем станут известны другие примеры успешного его применения.
Жидкие кристаллы
Жидкие кристаллы – это жидкости, обладающие как и кристаллы анизотропией свойств (в частности, оптических), связанной с упорядоченной ориентацией молекул. Благодаря сильной зависимости свойств жидкого кристалла от внешних воздействий они находят разнообразное применение в технике (в температурных датчиках, индикаторных устройствах, модуляторах света и т. п.). Жидкие кристаллы известны более 100 лет, но практический интерес они вызвали лишь несколько десятилетий назад. Жидкокристаллические индикаторы приборов, калькуляторов, переносных компьютеров – все это стало обыденным и привычным. Сегодня на мировом рынке дисплейных технологий жидкокристаллические устройства уступают разве что кинескопам, а по экономичности потребления энергии в дисплеях с относительно небольшой площадью экрана они не имеют конкурентов.
Жидкокристаллическое вещество состоит их органических молекул с преимущественной упорядоченной ориентацией в одном или двух направлениях. Такое вещество обладает текучестью как жидкость, и кристаллическая упорядоченность молекул подтверждается его оптическими свойствами. Различают три основных типа жидких кристаллов: нематические, смектические и холестирические (см. рис. 6.17).
Рис. 6.17. Типы жидкокристаллических структур: вверху – нематических; посередине- смектических; внизу- холестических
Наименьшую упорядоченность имеют нематические жидкие кристаллы. Молекулы их параллельны, но сдвинуты вдоль своих осей одна относительно другой на произвольные расстояния, т.е. длинные, узкие и в то же время весьма жесткие молекулы выстраиваются подобно сплавляемым по реке бревнам (см. рис. 6.17, вверху). Более сложная форма молекул – в виде плоскостей, из которых образуется многослойная относительно упорядоченная структура, наблюдается в смектических жидких кристаллах (рис. 6.17, посредине). По структуре холестирические жидкие кристаллы похожи на нематические, но отличаются от них дополнительным закручиванием молекул в направлении, перпендикулярном их длинным осям (рис. 6.17, внизу). Шаг такой спиральной структуры может быть очень большим и достигать несколько микрометров. Под действием даже очень слабого электрического поля может быть нарушено равновесие ориентированных молекул, при этом изменяются оптические свойства жидкокристаллического вещества: например, из прозрачного оно переходит в светонепроницаемое состояние. Прогресс в создании новых жидкокристаллических материалов во многом зависит от успешного синтеза молекул сферической, стержне- или дискообразной формы. Одно из перспективных направлений в химии жидких кристаллов – реализация данных структур при синтезе полимеров. Молекулярная упорядоченность, характерная для нематических жидких кристаллов, сформированная при полимеризации, сильно влияет на физические, в том числе и оптические свойства синтезируемого вещества. Именно такой принцип лежит в основе производства искусственных волокон с исключительно высоким пределом прочности на растяжение, которые могут заменить материалы для изготовления фюзеляжей самолетов, бронежилетов и т. п.
Блоксополимеры
Молекулы блоксополимеров, составляющих разновидность полимеров, в результате самоорганизации могут принимать форму сферы, чередующихся слоев, стержней и т. п., образуя своеобразный орнамент. Например, трехблочный сополимер формируется из двух полимеров А и В, причем полимер В расположен между сегментами полимера А. В сформированной структуре А–В–А центральная часть обладает свойствами полимера В, а периферийная – полимера А. Если химическая связь между молекулами А и В приводит к отталкиванию, то образуется сферическая структура, в которой молекулы полимера А относительно равномерно распределены в матрице из молекул полимера В. Расположение молекул в блоксополимере сильно влияет на его механические свойства. Например, блок сополимер, содержащий 1400 молекул бутадиена (В) и 250 молекул стирола (А) и образующий структуру А–В–А, характеризуется достаточно высоким пределом прочности на растяжение. Тот же трехблочный сополимер, но с обращенной структурой, т. е. В–А–В, представляет собой сиропообразную жидкость с близкой к нулю пределом прочности. При нагревании блоксополимера со структурой А– В–А можно придать ему любую форму, а при охлаждении до комнатной температуре он становится похожим на вулканизированную резину, но в отличие от резины его снова можно нагреть и придать ему другую форму. Такое свойство термопластичности блоксополимеров имеет важное практическое значение.
Оптические материалы
Подобно тому, как в микроэлектронике транзисторы вытеснили электронные лампы, тончайшие кварцевые нити вытесняют медную проволку, из которой в течение длительного времени изготовлялись многожильные кабели. На смену электрическому сигналу, посылаемому по медному проводу, постепенно приходит значительно более информативный световой сигнал, распространяющийся по светопроводящим волокнам. Прогресс в развитии световолоконной индустрии во многом определился технологической возможностью изготовления высокопрочной кварцевой нити путем химической конденсации паровой фазы. Технология изготовления кварцевой нити относительно проста. Вначале, вещество, содержащее кремний, сжигается в потоке кислорода. В результате образуется фаза чистого диоксида кремния, которая осаждается на внутренней поверхности стеклянной трубки. Затем стеклянная трубка с нанесенным слоем диоксида кремния размягчается и вытягивается в тонкую нить. Толщина полученной таким образом кварцевой нити со стеклянным покрытием составляет примерно 0,1 толщины человеческого волоса. Совершенствование технологииизготовления кварцевых нитей позволило менеечем за десятилетний срок примерно в 100 раз сократить потери светового потока. Из новых оптических материалов, например, таких как фторидные стекла, можно получить еще более прозрачные волокна. В отличие от обычных стекол, состоящих из смеси оксидов металлов, фторидные стекла – это смесь фторидов металлов. Волоконная оптика открывает чрезвычайно большие возможности для передачи большого объема информации на большие расстояния. Уже сегодня многие телефонные станции, телевидение и т. п. с успехом пользуются волоконно-оптической связью. Современная химическая технология сыграла важную роль не только в разработке новых оптических материалов – оптических волокон, но и в создании материалов для оптических устройств для переключения, усиления и хранения оптических сигналов. Оптические устройства оперируют в новых временных масштабах обработки световых сигналов. Например, оптический переключатель срабатывает за одну миллионную миллионной доли секунды (пикосекунду). В современных оптических устройствах используются ниобат лития и арсенид галлия-алюминия. Экспериментальные исследования показывают, что органические стереоизомеры, жидкие кристаллы и полиацетилены обладают лучшими оптическими свойствами, чем ниобат лития, и являются весьма перспективными материалами для новых оптических устройств.
Материалы с электрическими свойствами
В 50-х годах XX в. по мере изучения природы проводимости полупроводников создавались полупроводниковые материалы для электронных устройств. Вначале такими материалами служили преимущественно монокристаллы кремния и германия (см. рис. 6.18) с содержанием в них относительно небольшой концентрации примесей. Полупроводниковыми свойствами, как выяснилось позже, обладают и бинарные соединения, например, соединения галлия и мышьяка, антимонид индия. Из антимонида индия до сих пор изготавливаются высокочувствительные полупроводниковые детекторы для ближней инфракрасной области.
Рис. 6.18. Монокристалл германия (увеличение в 4000 раз)
Через некоторое время в центре внимания разработчиков оказались монокристаллы арсенида галлия, выращенные на подложках из монокристаллического фосфида индия. Современная технология позволяет получить несколько слоев арсенида галлия различной толщины с различным содержанием примесей. Из арсенид-галлиевых материалов изготавливают рабочие узлы лазеров и лазерных дисплейных устройств, применяемых в длинноволновых оптических линиях связи. В процессе разработки новых полупроводниковых материалов были неожиданно открыты полупроводниковые свойства аморфного (некристаллического!) кремния. К настоящему времени открыты совершенно новые группы материалов, обладающих электрической проводимостью. Физические свойства их в значительной степени зависят от локальной структуры и молекулярных связей. Некоторые из таких материалов относятся к неорганическим, другие – к органическим соединениям. Изучение органических материалов с электропроводящими свойствами началось в конце 60-х, когда были синтезированы проводящие органические кристаллы. Такие проводники были получены в реакциях соединений тетратиафульвалена и тетрационохинодиметана. Молекулы данных соединений имеют плоскую структуру, и в смешанном кристалле они располагаются последовательно, образуя столбы. В результате взаимодействия смежных молекул формируются комплексы с переносом заряда. Такое взаимодействие возможно при наличии донора – молекулы, легко отдающей электроны, и акцептора – молекулы, принимающей их. Роль донора выполняет молекула тетратиафульвалена, а роль акцептора – молекула тетрацианохинодиметана. При переносе заряда между молекулами возникает электрический ток вдоль проводящего столбика. Механизм переноса заряда в проводящих столбиках обнаружен и в других материалах – полимерных проводниках. В таких проводниках большие плоские молекулы служат элементами проводящего столбика и образую металломакроциклы, соединяющиеся друг с другом посредством ковалентно связанных атомов кислорода. Такая химическая сконструированная молекула обладает электрической проводимостью, и это – настоящая сенсация. Атомы металла и окружающие его в плоском макроцикле группы можно заменить и модифицировать различными способами. В результате можно получить полимер с заданными электропроводящими свойствами. В углеродном скелете одного из простейших органических полимеров двойные связи чередуются с одинарными. Такая связь называется сопряженной. Она обусловливает подвижность электрических зарядов вдоль углеродной цепи. Данные полимеры с присадками брома, йода и пентафторида мышьяка приобретают металлический блеск и свойство проводить электрический ток лучше многих металлов, например таких, как медь. Технология изготовления полимерных проводников уже освоена, и число разновидностей таких проводников становится все больше. Под воздействием определенных реагентов полипарафенилен, парафениленсульфид, полипиррол и другие полимеры приобретают электропроводящие свойства. В настоящее время разрабатываются технологии синтеза полимерных проводников, обладающих прочностью, термопластичностью и эластичностью. Проводятся работы по созданию электрохимическим методом дешевых фотоэлектрических элементов для преобразования солнечной энергии в электрическую. Возможно, с помощью полимерных электродов удастся создать легкие батареи с подзарядкой и большой плотностью аккумулирующей энергии. В некоторых твердых материалах с ионной подвижной структурой подвижность ионов сравнивается с подвижностью ионов в жидкости. Подобные материалы – твердотельные ионные проводники – используются в устройствах памяти, дисплеях, датчиках, а также в качестве электролитов и электродов в батареях. Например, бета-алюминий натрия служит твердым проводящим электролитом в натриево-серной батарее. Обычно ионное твердотельное вещество, например хлорид натрия, имеет определенный химический состав и является диэлектриком. При получении твердотельных электролитов создаются структурные дефекты и формируется состав с отличным от целочисленного соотношения между его компонентами. Носители заряда вводятся между слабо связанными слоями решетки, где они могут свободно перемещаться. Такими подвижными носителями заряда могут служить ионы лития или водорода, а матрицу для их внедрения может образовать, например, графит. Ионные проводники на основе диоксида циркония находят применение, например, при изготовлении чувствительных элементов кислородного анализатора выхлопных газов автомобиля. При создании современной микроэлектронной техники и высокочувствительной аппаратуры используются разнообразные анизотропные материалы с анизотропными электрическими, магнитными и оптическими свойствами. Такими свойствами обладают ионные кристаллы, органические молекулярные кристаллы, полупроводниковые и многие другие материалы. Например, поливинилденхлорид (CH2CCI2,)n, изменяющий форму в электрическом поле, применяется в гидролокаторах и микрофонах. Анизотропные тонкопленочные магнитные материалы служат основой для создания современных высокоплотных накопителей информации. Современная технология позволяет получить проводящие стекла – материал в виде стекла, но не с диэлектрическими свойствами, а с металлической проводимостью или полупроводниковыми свойствами. Такая технология основана на быстром замораживании жидкости, конденсации газовой фазы на очень холодную поверхность или имплантации ионов на поверхность твердого вещества. Например, некристаллический кремний с полупроводниковыми свойствами можно получить в результате быстрой конденсации продуктов, образующихся в тлеющимся разряде в атмосфере газообразного силана SiH4. Из данного материала можно изготавливать дешевые солнечные батареи. Рабочие параметры таких батарей в значительной степени зависят от концентрации примесей водорода, химически связанного с неупорядоченно расположенными атомами кремния. Таким образом, с применением современных технологий можно получить новые материалы с необычным комплексом свойств, не наблюдаемых в традиционных материалах.
Материалы диссоциации металлоорганических соединений
Результаты экспериментальных исследований последнего времени показали, что при термической диссоциации ряда металлоорганических соединений получаются чистые металлы различной твердой формы, обладающие уникальными свойствами. К таким металлоорганическим соединениям относятся: · карбонилы: W(CO)6, Mo(CO)6, Fe(CO)5,Ni(CO)4; · ацетилацетонаты металлов: Сu(С5Н702)2, Pd(C5H702 )2, Pt (C5Н7О2)2 , Ru(C5H7O2)3; · дикарбонилацетонат родия: Rh(C5H7O2)2(СО)2 и др. Данным соединениям в газообразном состоянии присуща высокая летучесть, они разлагаются при нагревании до 100–150°С. В результате термической диссоциации можно получить чистую металлическую фазу в различных конденсированных формах: высокодисперсные порошки, металлические вискерсы, беспористые тонкопленочные материалы, ячеистые металлоны, металлические волокна и бумага. Высокодисперсные порошки состоят из частиц малых размеров – до 1–3 мкм. Такие порошки используются для производства металлокерамики – композиций металлов с оксидами, нитридами, боридами, получаемых методом порошковой металлургии. Металлические порошки, например железа и никеля, обладающие магнитными свойствами находят применение в радиоэлектронике и электротехнике. Металлические вискерсы представляют собой нитевидные кристаллы диаметром 0,5–2,0 мкм и длиной 5–50 мкм. Для таких кристаллов характерны: высокая механическая прочность, примерно в 10 раз превышающая прочность самых высококачественных сталей, высокая устойчивость к окислению, необычные магнитные свойства. Формируются данные кристаллы на активных центрах подложки, где в парамагнитных кластерах образуется своеобразная ступенчатая монокристаллическая структура. Металлические вискерсы представляют практический интерес для синтеза новых композиционных материалов с металлической или пластмассовой матрицей. Беспористые тонкопленочные материалы отличаются высокой плотностью упаковки атомов. По величине отражения света данный материал приближается к серебру. Беспористое тонкопленочное покрытие толщиной около 90 мкм надежно защищает от коррозии даже в самой агрессивной среде – газовом потоке фтора. Коррозионная стойкость таких покрытий примерно в 5 раз выше, чем покрытий, полученных гальваноосаждением или методом восстановления. Ячеистые металлы образуются при осаждении металла в результате проникновения паров металло-органических соединений в поры любого материала. Таким способом формируется ячеистая металлическая структура. Металлизированные волокна и бумага обладают уникальными механическими, теплофизическими и электропроводящими свойствами. В будущем они найдут широкое применение. Таким образом, современные химические технологии позволяют получить новые материалы с весьма необычными свойствами, некоторые из них уже нашли практическое применение.
Тонкопленочные материалы для накопителей информации
Любая электронно-вычислительная машина, в том числе и персональный компьютер содержит накопитель информации – запоминающее устройство, способное накапливать и хранить большой объем информации. Большинство накопителей информации базируются на магнитной записи. В накопителях информации на подвижном магнитном носителе, где основное – это накопление информации, важным параметром является поверхностная информационная плотность записи, определяемая количеством информации, приходящейся на единицу площади поверхности рабочего слоя носителя информации. Изготовление современных магнитных накопителей большой емкости основано на применении тонкопленочных материалов. Благодаря применению новых магнитных материалов и в результате совершенствования технологии изготовления всех тонкопленочных элементов магнитного накопителя за относительно короткий срок поверхностная плотность записи информации увеличилась в пять раз: в 1989 г. она составляла примерно 1,55 Мбит/мм2, в 1996г. – 4,65 Мбит/мм2. Запись с высокой поверхностной плотности осуществляется на носитель, рабочий слой которого формируется из тонкопленочного кобальтсодержащего материала, например, сплава CoPtCr с уникальной магнитной структурой. Высокую плотность записи можно реализовать только с помощью преобразователей, тонкопленочный материал магнитопровода которых характеризуется большой магнитной индукцией насыщения и высокой магнитной проницаемостью. Такими свойствами обладают пермаллоевые (железоникелевые) пленки, тонкопленочные материалы Fe16N2 с относительно небольшим содержанием азота, многослойные пленки FeSi/NiFe и другие материалы. Для воспроизведения записанной с высокой плотностью информации применяется высокочувствительный тонкопленочный элемент, электрическое сопротивление которого изменяется в магнитном поле. Такой элемент называется магниторезистивным. Он напыляется из высокопроницаемого магнитного материала, например пермаллоя. Относительное изменение электрического сопротивления пермаллоевого элемента в магнитном поле составляет около 2%. Данная величина, как показали результаты экспериментальных исследований последнего десятилетия, может достигать (например, в многослойных тонкопленочных материалах, однослойных гранулированных пленках и других материалах) десятков процентов, поэтому их называют материалами со сверхгигантским магнетосопротивлением. Таким образом, с применением тонкопленочных магнитных материалов при изготовлении накопителей информации большой емкости уже реализована довольно высокая плотность записи информации. При модернизации таких накопителей и внедрении новых материалов следует ожидать дальнейшего увеличения информационной плотности, что весьма важно для развития современных технических средств записи, накопления и хранения информации.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|