Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Влияние ионизирующего излучения




Ионизирующее излучение — это электромагнитное излучение, которое создает-ся при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы различных знаков.

Взаимодействие с веществом заряженных частиц, гамма-квантов и рентге-новских лучей. Корпускулярные частицы ядерного происхождения (a-части, b-части-цы, нейтроны, протоны и т.д.), а также фотонное излучение (g-кванты и рентгеновское и тормозное излучение) обладают значительной кинетической энергией. Взаимодейст-вуя с веществом, они теряют эту энергию в основном в результате упругих взаимодей-ствий с ядрами атомов или электронами (как это происходит при взаимодействии биль-ярдных шаров), отдавая им всю или часть своей энергии на возбуждение атомов (т.е. перевод электрона с более близкой на более удаленную от ядра орбиту), а также на ио-низацию атомов или молекул среды (т.е. отрыв одного или более электронов от атомов)

Упругое взаимодействие характерно для нейтральных частиц тронов) и фотонов, не имеющих заряда. При этом нейтрон, взаимодействуя с атомами, может в соответст-вии с законами классической механики передавать часть энергии, пропорциональную массам соударяющихся частиц. Если это тяжелый атом, то передается только часть энергии. Если это атом водорода, равный массе нейтрона, то передается вся энергия. При этом нейтрон замедляется до тепловых энергий порядка долей электровольта и да-лее вступает в ядерные реакции. Ударяя в атом, нейтрон может передать ему такое ко-личество энергии, которое достаточно, чтобы ядро «выскочило» из электронной обо-лоч­ки. В этом случае образуется заряженная частица, обладающая значи­тельной скоро-стью, которая способна осуществлять ионизацию среды.

Аналогично взаимодействие с веществом и фотона. Он самостоя­тельно не способен ионизировать среду, но выбивает электроны из атома, которые и производят ионизацию среды. Нейтроны и фотонное излучение относятся к косвенно ионизирующим излучениям.

Заряженные частицы (a- и b-частицы), протоны и другие способны ионизировать среду за счет взаимодействия с электрическим полем атома и электрическим полем ядра. При этом заряженные частицы тормозятся и отклоняются от направления своего движения, испуская при этом тормозное излучение, одно из разновидностей фотонного излучения.

Заряженные частицы могут за счет неупругих взаимодействий передавать атомам среды количество энергии, недостаточное для иони­зации. В этом случае образуются атомы в возбужденном состоянии, которые передают эту энергию другим атомам, либо испускают кванты характеристического излучения, либо, соударяясь с другими возбуж­денными атомами, могут получить энергию, достаточную для ионизации атомов.

Как правило, при взаимодействии излучений с веществами проис­ходят все три вида последствий этого взаимодействия: упругое соуда­рение, возбуждение и ионизация. На примере взаимодействия электронов с веществом в табл. 3.15 показана относительная доля и энергия, теряемая ими на различные процессы взаимодействия.

 

Таблица 3.15. Относительная доля энергии, теряемая электронами в результате различных процессов взаимодействия, %

 

Энергия, эВ Упругое взаимодействие Возбуждение атомов среды Ионизация
103 8,7 54,8 36,5
104 4,1 63,4 32,4
105 1,8 68,0 30,2

 

Процесс ионизации является наиболее важным эффектом, на котором построены почти все методы дозиметрии ядерных излучений, особенно косвенно ионизирующих излучений.

В процессе ионизации образуются две заряженные частицы: поло­жительный ион (или атом, потерявший электрон с внешней оболочки) и свободный электрон. При каждом акте взаимодействия могут быть оторваны один или несколько электронов.

Истинная работа ионизации атома составляет 10... 17 эВ, т.е. столько энергии требуется для отрыва электрона от атома. Экспериментально установлено, что энергия, передаваемая на образование одной пары ионов в воздухе, в среднем 35 эВ для a -частиц и 34 эВ для электронов, а для вещества биологической ткани примерно 33 эВ. Разница опре­деляется следующим. Среднюю энергию, идущую на образование одной пары ионов, определяют экспериментально как отношение энергии первичной частицы к среднему числу пар ионов, образованной одной частицей на всем ее пути. Так как заряженные частицы тратят свою энергию на процессы возбуждения и ионизации, то в экспери­ментальную величину энергии ионизации входят все виды энергети­ческих потерь, отнесенные к образованию одной пары ионов. Экспериментальным подтверждением сказанному является табл. 3.14.

Дозы излучения. Когда ионизирующее излучение прохо­дит через вещество, то на него оказывает воздействие только та часть энергии излучения, которая передается веществу, поглощается им. Порция энергии, переданная излучением веществу, называется дозой.

Количественной характеристикой взаимодействия ионизирующего излучения с веществом является поглощенная доза. Поглощенная доза Д (Дж/кг) — это отношение средней энергии Не, переданной ионизи­рующим излучением веществу в элементарном объеме, к единице массы dm вещества в этом объеме

.

В системе СИ в качестве единицы поглощенной дозы принят грей (Гр), названной в честь английского физика и радиобиолога Л. Грея. 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг. 1 Гр = 1 Дж×кг-1.

Доза эквивалентная Н — поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного излучения, WR

,

где DT,R — средняя поглощенная доза в органе или ткани Т, WR - взвешивающий коэффициент для излучения R. Если поле излучения состоит из нескольких излучений с различными величинами WR, эквивалентная доза определяется в виде:

.

Единицей измерения эквивалентной дозы является Дж×кг.-1, име­ющий специальное название зиверт (Зв).

Доза эффективная Е — величина, используемая как мера возник­новения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она пред­ставляет сумму произведений эквивалентной дозы в органе на соответствующий коэффициент для данного органа или ткани:

,

где — эквивалентная доза в ткани Т за время t, a WT — взвеши­вающий коэффициент для ткани Т. Единица измерения эффективной дозы — Дж×кг-1, которая имеет специальное название — зиверт (Зв).

Доза эффективная коллективная S — величина, определяющая пол­ное воздействие излучения на группу людей, определяется в виде:

,

где — средняя эффективная доза i -й подгруппы группы людей, — число людей в подгруппе.

Единица измерения эффективной коллективной дозы — человеко-зиверт (чел-Зв).

Механизм биологического действия иони­зирующих излучений. Биологиче-ское действие радиации на живой организм начинается на клеточном уровне. Живой организм состоит из клеток. Клетка животного состоит из клеточной оболочки, окружа-ющей студенистую массу — цитоплазму, в которой заключено более плотное ядро. Ци-топлазма состоит из органических соединений белкового характера, образующих про-странственную решетку, ячейки которой заполняют вода, растворенные в ней соли и относительно малые молекулы липидов — веществ, по свойствам подобным жирам. Ядро считается наиболее чувствительной жизненно важной частью клетки, а основны-ми его структурными элементами являются хромо­сомы. В основе строения хромосом находится молекула диоксирибо-нуклеиновой кислоты (ДНК), в которой заключена на-следственная информация организма. Отдельные участки ДНК, ответственные за фор-мирование определенного элементарного признака, называются генами или «кирпичи-ками наследственности». Гены расположены в хромосомах в строго определенном по-рядке и каждому организму соответствует определенный набор хромосом в каждой клетке. У человека каждая клетка содержит 23 пары хромосом. При делении клетки (митозе) хромосомы удваиваются и в определенном порядке располагаются в дочерних клетках.

Ионизирующее излучение вызывает поломку хромосом (хромосом­ные аберрации), за которыми происходит соединение разорванных концов в новые сочетания. Это и приводит к изменению генного аппарата и образованию дочерних клеток, неодинаковых с исходными. Если стойкие хромосомные аберрации происходят в половых клетках, то это ведет к мутациям, т.е. появлению у облученных особей потомства с другими признаками. Мутации полезны, если они приводят к повы­шению жизнестойкости организма, и вредны, если проявляются в виде различных врожденных пороков. Практика показывает, что при действии ионизирующих излучений вероятность возникновения полезных мутаций мала.

Однако в любой клетке обнаружены непрерывно действующие процессы исправления химических повреждений в молекулах ДНК. Оказалось также, что ДНК достаточна устойчива по отношению к разрывам, вызываемым радиацией. Необходимо произвести семь разрушений структуры ДНК, чтобы она уже не могла восстановиться, т.е. только в этом случае происходит мутация. При меньшем числе разрывов ДНК восстанавливается в прежнем виде. Это указывает на высокую прочность генов по отношению к внешним воздействиям, в том числе и ионизирующим излучениям.

Разрушение жизненно важных для организма молекул возможно не только при прямом их разрушении ионизирующим излучением (теория мишени), но и при косвенном действии, когда сама молекула не поглощает непосредственно энергию излучения, а получает ее от другого молекулы (растворителя), которая первоначально поглотила эту энергию. В этом случае радиационный эффект обусловлен вторичным влиянием продуктов радиолиза (разложения) растворителя на молекулы ДНК. Этот механизм объясняется теорией радикалов. Повторяющиеся прямые попадания ионизирующих частиц в молекулу ДНК особенно в ее чувствительные участки — гены, могут вызвать ее распад. Однако вероятность таких попаданий меньше, чем попаданий в молекулы воды, которая служит основным растворителем в клетке. Поэтому радиолиз воды, т.е. распад при действии радиации на водородный (Н и гидроксильный (ОН) радикалы с последующим образованием молекулярного водорода и перекиси водорода, имеет первостепенное значение в радиобиологических процессах. Наличие в системе кислорода усиливает эти процессы. На основании теории радикалов главную рол в развитии биологических изменений играют ионы и радикалы, которые образуются в воде вдоль траектории движения ионизирующих частиц.

Высокая способность радикалов вступать в химические реакции обусловливает процессы их взаимодействия с биологически важными молекулами, находящимися в непосредственной близи от них. В таких реакциях разрушаются структуры биологиче-ских веществ, а это в свою очередь приводит к изменениям биологических процессов, включая процессы образования новых клеток.

Последствия облучения людей ионизирующим излучением. Когда мутация возникает в клетке, то о распространяется на все клетки нового организма, образовавшие путем деления. Помимо генетических эффектов, которые могут сказываться на последующих поколениях (врожденные уродства), наблю­даются и так называемые соматические (телесные) эффекты, которые опасны не только для самого данного организма (соматическая мута­ция), но и его потомства. Соматическая мутация распространяется только на определенный круг клеток, образовавшихся путем обычного деления из первичной клетки, претерпевшей мутацию.

Соматические повреждения организма ионизирующим излучением являются ре-зультатом воздействия излучения на большой комплекс — коллективы клеток, образу-ющих определенные ткани или органы. Радиация тормозит или даже полностью оста-навливает процесс деле­ния клеток, в котором собственно и проявляется их жизнь, а до-статочно сильное излучение в конце концов убивает клетки. Разрушительное действие излучения особенно заметно проявляется в молодых тканях. Это обстоятельство ис-пользуется, в частности, для защиты организма от злокачественных (например, рако-вых опухолей) новообразований, которые разрушаются под воздействием ионизирую-щих излучений значительно быстрее доброкачественных клеток. К соматическим эф-фектам относят локальное повреждение кожи (лучевой ожог), катарак­ту глаз (помутне-ние хрусталика), повреждение половых органов (кратковременная или постоянная сте-рилизация) и др.

В отличие от соматических, генетические эффекты действия ради­ации обнаружить трудно, так как они действуют на малое число клеток и имеют длительный скрытый период, измеряемый десятками лет после облучения. Такая опасность существует даже при очень слабом облу­чении, которое хотя и не разрушает клетки, но способно вызвать мутации хромосом и изменить наследственные свойства. Большинство подобных мутаций проявляется только в том случае, когда зародыш получает от обоих родителей хромосомы, поврежденные одинаковым образом. Результаты мутаций, в том числе и смертность от наследст­венных эффектов — так называемая генетическая смерть, наблюдались задолго до того, как люди начали строить ядерные реакторы и приме­нять ядерное оружие. Мутации могут быть вызваны космическими лучами, а также естественным радиационным фоном Земли, на долю которого по оценкам специалистов приходится 1 % мутаций человека.

Установлено, что не существует минимального уровня радиации, ниже которого мутации не происходит. Общее количество мутаций, вызванных ионизирующим излучением, пропорционально численно­сти населения и средней дозе облучения. Проявление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового порога. Генетические эффекты определяются только эффективной коллектив­ной дозой человеко-зиверт (чел-Зв), а выявление эффекта у отдельного индивидуума практически не предсказуемо.

В отличие от генетических эффектов, которые вызываются малыми Дозами ра-диации, соматические эффекты всегда начинаются с определенной пороговой дозы:при меньших дозах повреждения организма не происходит. Другое отличие соматических повреждений от генетических заключается в том, что организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения необратимы.

Значения некоторых доз и эффектов воздействия излучения на организм приведены в табл. 3.16.

 

Таблица 3.16. Радиационное воздействие и соответствующие биологические эффекты

Воздействие
Доза, Зв Мощность дозы или продолжительность Облучение Биологический эффект
0,003 В течение недели О Практически отсутствует
0,01 Ежедневно (в течение нескольких лет) О Лейкемия
0,015 Единовременно Л Хромосомные нарушения в опухолевых клетках (культура соответствующих тканей)
0,25 В течение недели Л Практически отсутствует
0,5-1 Накопление малых доз Л Удвоение мутагенных эффектов у одного поколения
  Единовременно О Тошнота
3-5 - О СД50 для людей
  - Л Выпадение волос (обратимое)
4-5 0,1-0,5 Зв/сут О Возможно излечение в стационарных условиях
6-9 3 Зв/сут или накопление малых доз Л Радиационная катаракта
10-25 2-3 Зв/сут Л Возникновение рака сильно радиочувствительных органов
25-60 2-3 Зв/сут Л Возникновение рака умеренно радиочувствительных органов
40-50 2-3 Зв/сут Л Дозовый предел для нервных тканей
50-60 2-3 Зв/сут Л Дозовый предел для желудочно-кишечного тракта

 

Примечание. О — общее облучение тела; Л — локальное облучение; СД50 — доза, приводящая к 50 %-ной смертности среди лиц, подвергшихся облучению.

Нормирование воздействия ионизирующих излучений. К основным право-вым нормативам в области радиа­ционной безопасности относятся Нормы радиацион-ной безопасности (НРБ—99). Документ относится к категории санитарных правил (СП 2.6.1.758-99), утвержден Государственным санитарным врачом Рос­сийской Федерации 2 июля 1999 г.

Нормы радиационной безопасности включают в себя термины и определения, которые необходимо использовать в решении проблем радиационной безопасности. Они также устанавливают три класса нормативов: основные дозовые пределы; допусти-мые уровни, являю­щиеся производными от дозовых пределов; пределы годового по-ступления, объемные допустимые среднегодовые поступления, удельные активности, допустимые уровни загрязнения рабочих поверхностей и т.д.; контрольные уровни.

Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. При этом выделяются два вида эффектов, относящихся в медицинской практике к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, аномалии развития плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачествен­ные опухоли, лейкозы, наследственные болезни).

Обеспечение радиационной безопасности определяется следующи­ми основными принципами:

1. Принципом нормирования — непревышение допустимых пределов индиви-дуальных доз облучения граждан от всех источников ионизирующего излучения.

2. Принципом обоснования — запрещение всех видов деятельности по использованию источников ионизирующего излучения, при кото­рых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения.

3. Принципом оптимизации — поддержание на возможно низком и достижи-мом уровне с учетом экономических и социальных факторов индивидуальных доз об-лучения и числа облучаемых лиц при исполь­зовании любого источника ионизирующе-го излучения.

В целях социально-экономической оценки воздействия ионизиру­ющего излучения на людей для расчета вероятностей потерь и обос­нования расходов на радиационную защиту при реализации принципа оптимизации НРБ— 99 вводят, что облучение в коллективной эффек­тивной дозе в 1 чел-Зв приводят к потере 1 чел-года жизни населения.

НРБ — 99 вводят понятия индивидуальный и коллективный риск, а также опреде

ляют значение максимальной величины уровня принебрегаемого риска воздействия об-лучения. Согласно этим нормам инди­видуальный и коллективный пожизненный риск возникновения стохастических (вероятностных) эффектов определяется соответственно

; ,

где r, R — индивидуальный и коллективный пожизненный риск соот­ветственно; Е – ин-дивидуальная эффективная доза; — вероят­ность для i -го индивидуума полу-чить годовую эффективную дозу от Е до Е + dE; rE — коэффициент пожизненного ри-ска сокращения дли­тельности периода полноценной жизни в среднем на 15 лет один стохастический эффект (от смертельного рака, серьезных наследствен­ных эффектов и несмертельного рака, приведенного по вреду к пос­ледствиям от смертельного рака), равный

для производственного облучения:

1/чел.-Зв при мЗв/год

1/чел.-Зв при мЗв/год

для облучения населения:

1/чел.-Зв при мЗв/год;

1/чел.-Зв при мЗв/год

Для целей радиационной безопасности при облучении в течение года индивидуальный риск сокращения длительности периода полно­ценной жизни в результате возникновения тяжелых последствий от детерминированных эффектов консервативно принимается равным:

,

где — вероятность для i -го индивидуума быть облученным с дозой больше Д при обращении с источником в течение года; Д — пороговая доза для детерминированного эффекта.

Потенциальное облучение коллектива из N индивидуумов оправ­дано, если

,

где — среднее сокращение длительности периода полноценной жизни в результате возникновения стохастических эффектов, равное 15 лет; — среднее сокращение длительности периода полноценной жизни в результате возникновения тяжелых последствий от детерми­нированных эффектов, равное 45 лет; — денежный эквивалент потери 1 чел.-года жизни населения; V — доход от производства; Р — затраты на основное производство, кроме ущерба от защиты; Y — ущерб от защиты.

НРБ—99 подчеркивают, что снижение риска до возможного низ­кого уровня (оптимизацию) следует осуществлять с учетом двух обсто­ятельств:

- предел риска регламентирует потенциальное облучение от всех возможных источников. Поэтому для каждого источника при оптими­зации устанавливается граница риска;

- при снижении риска потенциального облучения существует ми­нимальный уровень риска, ниже которого риск считается пренебрежимым и дальнейшее снижение риска нецелесообразно.

Предел индивидуального риска для техногенного облучения лиц из персонала принимается 1,0×10-3 за 1 год, а для населения 5,0×10-5 за 1 год.

Уровень пренебрежимого риска разделяет область оптимизации риска и область безусловно приемлемого риска и составляет 10-6 за 1 год.

НРБ—99 вводят следующие категории облучаемых лиц:

- персонал и лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

- все население, включая лиц из персонала, вне сферы и условий их производст-венной деятельности.

Для указанных категорий облучаемых лиц НРБ—99 вводят значения дозовых пределов, представленных в табл. 3.17.

Таблица 3.17. Основные дозовые пределы

Нормируемые величины     Дозовые пределы
лица из персонала* (группа A) лица из населения
Эффективная доза     20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год 1 мЗв в год в среднем за любые 5 лет, но не более 5 мЗв в год
Эквивалентная доза за год в хрусталике коже** кистях и стопах 150 мЗв 500 мЗв 500 мЗв 15 мЗв 50 мЗв 50мЗв

 

Примечания. * Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А.

** Относится к среднему значению в слое толщиной 5 мг/см2 под покровным слоем толщиной 5 мг/см2. На ладонях толщина покровного слоя — 40 мг/см2.

Основные дозовые пределы облучаемых лиц из персонала и насе­ления не включают в себя дозы от природных, медицинских источни­ков ионизирующего излучения и дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограни­чения.

НРБ—99 предусматривают, что при одновременном воздействии источников внешнего и внутреннего облучения должно выполняться условие, чтобы отношение дозы внешнего облучения к пределу дозы и отношение годовых поступлений нуклидов к их пределам в сумме не превышали 1.

Для женщин из персонала в возрасте до 45 лет эквивалентная доза в коже на поверхности нижней части живота не должна превышать 1 мЗв в месяц, а поступление радионуклидов в организм не должно превышать за год 1/20 предела годового поступления для персонала. При этом эквивалентная доза облучения плода за 2 месяца не выяв­ленной беременности не превышает 1 мЗв.

При установлении беременности женщин из персонала работода­тели должны переводить их на другую работу, не связанную с излуче­нием.

Для студентов в возрасте до 21 года, проходящих облучение с источниками ионизирующего излучения, годовые накопленные дозы не должны превышать значений, установленных для лиц из населения.

При проведении профилактических медицинских рентгенологиче­ских научных исследований практически здоровых лиц, годовая эф­фективная доза облучения не должна превышать 1 мЗв.

НРБ—99 устанавливают также требования по ограничению облу­чения населения в условиях радиационной аварии.

 

ВЛИЯНИЕ ЗВУКОВЫХ ВОЛН

Шум — это беспорядочное сочетание звуков различной частоты и интенсивности (силы), возникающих при механических колебаниях в твердых, жидких и газообразных средах. Шум отрицательно влияет на организм человека, и в первую очередь на его центральную нервную и сердечно-сосудистую системы. Длительное воздействие шума снижает остроту слуха и зрения, повышает кровяное давление, утомляет цент­ральную нервную систему, в результате чего ослабляется внимание, увеличивается количество ошибок в действиях работающего, снижа­ется производительность труда. Воздействие шума приводит к появле­нию профессиональных заболеваний и может явиться также причиной несчастного случая. Источниками производственного шума являются машины, оборудование и инструмент.

Органы слуха человека воспринимают звуковые волны с частотой 16...20 000 Гц. Колебания с частотой ниже 20 Гц (инфразвук) и выше 20 000 Гц (ультразвук) не вызывают слуховых ощущении, но оказывают биологическое воздействие на организм.

При звуковых колебаниях частиц среды в ней возникает переменное давление, которое называют звуковым давлением Р. Распространение звуковых волн сопровождается переносом энергии, величина которой определяется интенсивностью звука I. Минимальное звуковое давление Р 0 и минимальная интенсивность звука I 0, различаемые ухом человека, называются пороговыми. Интенсивности едва слышимых звуков (порог слышимости) и интенсивность звуков, вызывающих болевые ощуще­ния (болевой порог), отличаются друг от друга более чем в миллион раз. Поэтому для оценки шума удобно измерять не абсолютные зна­чения интенсивности и звукового давления, а относительные их уровни в логарифмических единицах, взятые по отношению к пороговым значениям Р 0 и I 0.

За единицу измерения уровней звукового давления и интенсивно­сти звука принят децибел (дБ). Диапазон звуков, воспринимаемых органом слуха человека, 0...140 дБ. Уровень интенсивности звука определяется по формуле:

,

где I — интенсивность звука в данной точке, Вт/м2; I 0 — интенсив­ность звука, соответствующая порогу слышимости, равному 10-12 Вт/м2 при частоте 1000 Гц. Уровень звукового давления определяется по формуле:

,

где Р — звуковое давление в данной точке, Па; Р 0 — пороговое звуко­вое давление, равное 2×10-5 Па.

Звуковые колебания различных частот при одинаковых уровнях звукового давления по-разному воздействуют на органы слуха человека. Наиболее благоприятно воздействие звуков более высоких частот.

По частоте шумы подразделяются на низкочастотные (мак­симум звукового давления в диапазоне частот ниже 400 Гц), среднечастотные (400...1000 Гц) и высокочастотные (свыше 1000 Гц).

Для определения частотной характеристики шума звуковой диапа­зон по частоте разбивают на октавные полосы частот, где верхняя граничная частота равна удвоенной нижней частоте т.е.

.

Октавная полоса характеризуется среднегеометрической частотой:

.

По характеру спектра шум подразделяется на широко­полосный с непрерывным спектром шириной более одной октавы и тональный, в спектре которого имеются выраженные дискретные тона.

По временным характеристикам шум подразделя­ется на постоянный и непостоянный (колеблющийся во времени, прерывистый, импульсный).

Постоянным считается шум, уровень которого за восьмичасовой рабочий день изменяется во времени не более чем на 5 дБА, непосто­янным — более чем на 5 дБА. ГОСТ 12.1.003 — 83 устанавливает пре­дельно-допустимые условия постоянного шума на рабочих местах, при которых шум, действуя на работающего в течение восьмичасового рабочего дня, не приносит вреда здоровью. Нормирование ведется в октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

Для измерения на рабочих местах уровней шума в октавных полосах частот и общего уровня шума применяют различные типы шумоизме­рительной аппаратуры. Наибольшее распространение получили шумомеры, состоящие из микрофона, воспри-нимающего звуковую энергию и преобразующего ее в электрические сигналы, усилите-ля, корректи­рующих фильтров, детектора и стрелочного индикатора со шкалой, изме-ряемой в децибелах.

Производственный шум нарушает информационные связи, что вызывает снижение эффективности и безопасности деятельности че­ловека, так как высокий уровень шума мешает услышать предупреж­дающий сигнал опасности. Кроме того, шум вызывает обычную усталость. При действии шума снижаются способность сосредоточения внимания, точность выполнения работ, связанных с приемом и ана­лизом информации, и производительность труда. При постоянном воздействии шума работающие жалуются на бессонницу, нарушение зрения, вкусовых ощущений, расстройство органов пищеварения и т.д. У них отмечается повышенная склонность к неврозам. Энергозатраты организма при выполнении работы в условиях шума больше, т.е. работа оказывается более тяжелой. Шум, отрицательно воздействуя на слух человека, может вызвать три возможные исхода: временно (от минуты до нескольких месяцев) снизить чувствительность к звукам определен­ных частот, вызвать повреждение органов слуха или мгновенную глухоту. Уровень звука в 130 дБ вызывает болевое ощущение, а в 150 дБ приводит к поражению слуха при любой частоте.

Пределы действия (ПДУ) шума на человека гарантируют, что остаточное понижение слуха после 50 лет работы у 90 % работающих будет менее 20 дБ, т.е. ниже того предела, когда это начинает мешать человеку в повседневной жизни. Потеря слуха на 10 дБ практически не замечается. Предельные уровни шума при воздействии в течение 20 мин следующие:

 

Частота, Гц........…………………. 1—7 8—11 12—20 20—100
Предельные уровни шума, дБ ….        

 

Инфразвуком принято называть колебания с частотой ниже 20 Гц, распространяющиеся в воздушной среде. Низкая частота инфразвуковых колебаний обусловливает ряд особенностей его распространения в окружающей среде. Вследствие большой длины волны инфразвуковые колебания меньше поглощаются в атмосфере и легче огибают препятствия, чем колебания с более высокой частотой. Этим объясня­ется способность инфразвука распространяться на значительные рас­стояния с небольшими потерями частичной энергии. Вот почему обычные мероприятия по борьбе с шумом в данном случае неэффек­тивны. Под воздействием инфразвука возникает вибрация крупных предметов строительных конструкций, из-за резонансных эффектов и возбуждения вторичного индуцированного шума в звуковом диапазоне случаев имеет место усиление инфразвука в отдельных помещениях.

Источниками инфразвука могут быть средства наземного, воздуш­ного и водного транспорта, пульсация давления в газовоздушных смесях (форсунки большого диаме-тра) и др.

Наиболее характерным и широко распространенным источником низкоаккустических колебаний являются компрессоры. Отмечается, что шум компрессорных цехов является низкочастотным с преоблада­нием инфразвука, причем в кабинах операторов инфразвук становится более выраженным из-за затухания более высокочастотных шумов.

Источниками инфразвуковых колебаний являются также мощные вентиляцион-ные системы и системы кондиционирования. Максималь­ные уровни звукового давле-ния достигают 106 дБ на 20 Гц, 98 дБ на 4 Гц, 85 дБ на частотах 2 и 8 Гц.

В салонах автомобилей наиболее высокие уровни звукового давле­ния лежат в диапазоне 2...16 Гц, достигая 100 дБ и более. При этом, если автомобиль движется с открытыми окнами, уровень может зна­чительно возрастать, достигая 113...120 дБ в октавных полосах ниже 20 Гц. Открытое окно играет здесь роль резонатора Гельмгольца.

Высокие инфразвуковые уровни имеют место в шуме автобусов, составляя 107...113 дБ на частотах 16...31,5 Гц при общем уровне шума 74 дБ (А). Инфразвуковой характер имеет шум некоторых самоходных машин, например бульдозера, в шуме которого максимум энергии находится на частотах 16...31,5 Гц, составляя 106 дБ.

Источником инфразвука являются также реактивные двигатели самолетов и ракет. При взлете турбореактивных самолетов уровни инфразвука плавно нарастают от 70...80 дБ до 87...90 дБ на частоте 20 Гц. В то же время на частотах 125...150 Гц отмечается другой максимум, поэтому такой шум все же нельзя назвать выраженным инфразвуком.

Из приведенных примеров видно, что инфразвук на рабочих местах может достигать 120 дБ и выше. При этом чаще работающие подвер­гаются воздействию инфразвука при уровнях 90...100 дБ.

В диапазоне звука 1—30 Гц порог восприятия инфразвуковых колебаний для слухового анализатора составляет 80...120 дБ (А); а болевой порог — 130...140 дБ (А).

Исследования, проведенные в условиях производства, свидетель­ствуют, что в случае резко выраженного инфразвука относительно небольших уровней, например 95 и 100 дБ при общем уровне шума 60 дБ (А), отмечаются жалобы на раздражительность, головную боль, рассеянность, сонливость, головокружение. В то же время при наличии интенсивного широкополосного шума даже с достаточно высокими уровнями инфразвука указанные симптомы не появляются. Этот факт вероятнее всего связан с маскировкой инфразвука шумом звукового диапазона.

Ультразвуком принято считать колебания свыше 20 кГц, распрост­раняющиеся как в воздухе, так и в твердых средах. Это обусловливает контакт его с человеком через воздух и непосредственно от вибриру­ющей поверхности (инструмента, аппарата и дру-гих возможных источ­ников). Ультразвуковая техника и технология широко применяет-ся в различных отраслях народного хозяйства для целей активного воздей­ствия на ве-щества (пайка, сварка, лужение, механическая обработка и обезжиривание деталей и т.д.), структурного анализа и контроля фи­зико-механических свойств вещества и мате-риалов, (дефектоскопия), для обработки и передачи сигналов радиолокационной и вы-числитель­ной техни

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...