Медиаторы вегетативной нервной системы
Ацетилхолин является первым биологически активным веществом, которое было идентифицировано как нейромедиатор. Он высвобождается в окончаниях холинергических парасимпатических и симпатических волокон. Процесс освобождения медиатора является кальцийзависимым. Инактивация медиатора происходит с помощью фермента ацетилхолинэстеразы. Ацетилхолин оказывает свое воздействие на органы и ткани посредством специфических холинорецепторов. Действие ацетилхолина на постсинаптическую мембрану постганглионарных нейронов может быть воспроизведено никотином, а действие ацетилхолина на исполнительные органы — мускарином (токсин гриба мухомора}.На этом основании холинорецепторы разделили на Н-холинорецепторы (никотиновые) и М-холинорецепторы (мускариновые).Однако и эти виды холинорецепторов не однородны. Н-холишорецепторы в периферических отделах вегетативной нервной системы расположены в ганглионарных синапсах симпатического и парасимпатического отделов, в каротидных клубочках и хромаффинных клетках мозгового слоя надпочечников. Возбуждение этих холинорецепторов сопровождается соответственно облегчением проведения возбуждения через ганглии, что ведет к повышению тонуса симпатического и парасимпатического отделов вегетативной нервной системы; повышением рефлекторного возбуждения дыхательного центра, в результате чего углубляется дыхание; повышением секреции адреналина. М-холииорецепторы также подразделяются на несколько типов; М,-(М2- и М3-холинорецепторы. Но все они блокируются атропином. М,-холинорецепторы находятся на обкладочиых клетках желудочных желез и их возбуждение приводит к усилению секреции соляной кислоты. М-холинорецепторы располагаются в проводящей системе сердца. Возбуждение этих рецепторов приводит к понижению концентрации цАМФ, открытию калиевых каналов и увеличению тока К+, что приводит к гиперполяризации и тормозным эффектам: брадикардии, замедлению атриовентрикулярной проводимости, ослаблению сокращений сердца, понижению потребности сердечной мышцы в кислороде. М3-холинорецепторы локализованы в основном в гладких мышцах некоторых внутренних органов и экзокринных железах. Взаимодействие ацетилхолина с этими рецепторами приводит к активации натриевых каналов, деполяризации, формированию ВПСП,вследствие чего клетки возбуждаются и происходит сокращение гладких мышц и выделение соответствующих секретов.
Норадреналин обеспечивает химическую передачу нервного импульса в норадренергических синапсах вегетативной нервной системы, Норадреналин относится к катехоламинам. Он синтезируется из аминокислоты тирозина в области пресинаптической мембраны адренергического синапса. В хромаффинных клетках надпочечников этот процесс продолжается, в результате чего образуется адреналин (тирозин-ДОФА-дофамин-норадреналин-адреналии). Инактивация норадреналина происходит с помощью ферментов катехол-о-метилтрасферазы (КОМТ) и моноаминоксидазы (МАО), а также путем обратного захвата нервными окончаниями с последующим повторным использованием. Частично норадреналин диффундирует в кровеносные сосуды. Действие норадреналина на клетку опосредуется адренорецепторами. Адренорецепторы находятся в различных тканях организма и воспринимают действие норадреналина и адреналина. Адренорецепторы делят на а-адренорецепторы и b-адренорецепторы А1,-Адренорецепторы (постсинаптические) в основном локализованы в гладких мышцах сосудов кожи, слизистых и органов брюшной полости, а также в радиальной мышце глаза, гладких мышцах кишечника, матки, семявыносящих протоков, семенных пузырьках, капсуле селезенки, сфинктерах пищеварительного тракта и мочевого пузыря, пиломоторах. Возбуждение а,-адренорецепторов приводит к сужению радиальной мышцы глаза и расширению зрачка (мидриаз), сужению соответствующих сосудов и повышению АД, сокращению капсулы селезенки и выбросу депонированной крови, сокращению сфинктеров пищеварительного тракта и мочевого пузыря, расслаблению гладких мышц кишечника и снижению его перистальтики и т.д.
Среди A2-адренорецепторов выделяют пре- пост- и внесинаптические. Возбуждение пресинаптических а2-адренорецепторов по механизму отрицательной обратной связи уменьшает выделение норадреналина при его избытке в синаптической щели. Постсинаптические сс2-адренорецепторы находятся в бета-клетках поджелудочной железы. Их возбуждение вызывает угнетение выброса инсулина в кровь. Внесинаптические А2-адренорецепторы обнаружены преимущественно на мембране тромбоцитов, эндотелии некоторых сосудов, в жировых клетках. Возбуждение этих рецепторов вызывает сужение сосудов, агрегацию тромбоцитов, угнетение липолиза. B1-аденорецепторы (постсинаптические} выявлены в основном в проводящей системе сердца и гладкой мышце кишечника,их возоуждение приводит к увеличению частоты сердечных сокращении, повышению проводимости и сократимости сердечной мышцы, увеличению потребности сердца в кислороде, понижению тонуса и моторной активности кишечника. Стимуляция пресинаптических В2-адренорецепторов по механизму положитеьной обратной связи вызывает выделение норадреналина при его недостатке в синаптической щели. Дофамин осуществляет химическую передачу нервных импульсов не только в дофаминергических синапсах ЦНС, но и во вставочных нейронах симпатических ганглиев и во внутриорганном отделе вегетативной нервной системы. В дофаминергических нейронах биосинтез катехоламинов заканчивается на дофамине. Инактивация дофамина осуществляется ферментами КОМТ и МАО, а также путем обратного нейронального захвата. АТФ. Местом его локализации является пресинаптические терминали эффекториых нейронов внутриорганного отдела вегетативной нервной системы.при стимуляции этих окончаний выделяются пуриновые продукты распада — аденозин и ино-
зин. Действие АТФ проявляется в основном в расслаблении гладкой мускулатуры. Одним из медиаторов внутриорганного отдела вегетативной нервной системы является серотонин, или 5-окситриптамин, который выполняет также медиаторную функцию в центральных образованиях. Серотонин оказывает свое воздействие путем взаимодействия со специфическими серотониновыми рецепторами. Роль медиатора в вегетативной нервной системе может играть гистамин. Наибольшее количество его находится в постганглионарных симпатических волокнах. Инактивация гистамина осуществляется ферментом диаминоксидазой. Периферические гистамшювые рецепторы встречаются во всех органах и тканях организма. (ГАМК) — медиатором тормозного типа.
2. Анализ цикла сердечной деятельности. Основные показатели работы сердца. Минутный и систолический объем кровотока. Нормальные показатели у человека в условиях физиологического покоя и деятельности. Сокращение камер сердца называется систолой, расслабление – диастолой. В норме частота сердечных сокращений 60-80 в минуту. Цикл работы сердца начинается с систолы предсердий. Однако в физиологии сердца и клинике для его описания используется классическая схема Уиггерса. Она делит цикл сердечной деятельности на периоды и фазы. Длительность цикла, при частоте 75 ударов в мин., составляет 0,8 сек.Длительность систолы желудочков равна 0,33с. Она включает 2 периода: период напряжения, продолжительностью 0,08 сек. и период изгнания – 0,25 сек. Период напряжения делится на две фазы: фазу асинхронного сокращения, длительностью 0,05 сек и фазу изометрического сокращения 0,03 сек. В фазе асинхронного сокращения происходит неодновременное, т.е. асинхронное сокращение волокон миокарда межжелудочковой перегородки. Затем сокращение синхронизируется и охватывает весь миокард. Давление в желудочках нарастает, и атриовентрикулярные клапаны закрываются. Однако его величина недостаточна для открывания полулунных клапанов. Начинается фаза изометрического сокращения, т.е. во время нее мышечные волокна не укорачиваются, но сила их сокращений и давление в полостях желудочков нарастает. Когда оно достигает 120-130 мм рт ст. в левом и 25-30 мм рт ст. в правом, открываются полулунные клапаны – аортальный и пульмональный. Начинается период изгнания. Он длится 0,25 сек и включает фазу быстрого и медленного изгнания. Фаза быстрого изгнания продолжается 0,12 сек., медленного – 0,13 сек. Во время фазы быстрого изгнания давление в желудочках значительно выше, чем в соответствующих сосудах, поэтому кровь из них выходит быстро. Но так как давление в сосудах нарастает, выход крови замедляется. После того, как кровь из желудочков изгоняется, начинается диастола желудочков. ЕЕ продолжительность 0,47 сек. Она включает протодиастолический период, период изометрического расслабления, период наполнения и пресистолический период. Длительность протодиастолического периода 0,04 сек. Во время него начинается расслабление миокарда желудочков. Давление в них становится ниже, чем в аорте и легочной артерии, поэтому полулунные клапаны закрываются. После этого начинается период изометрического расслабления. Его продолжительность 0,08 сек. В этот период все клапаны закрыты, и расслабление происходит без изменения длины волокон миокарда. Давление в желудочках продолжает снижаться. Когда оно уменьшается до 0, т.е. становится ниже, чем в предсердиях, открываются атриовентрикулярные клапаны. Начинается период наполнения, длительность 0,25 сек. Он включает фазу быстрого наполнения, продолжительность которой 0,08 сек., и фазу медленного наполнения – 0,17 сек. После того, как желудочки пассивно заполнились кровью, начинается пресистолический период, во время которого происходит систола предсердий. Его длительность 0,1 сек. В этот период в желудочки закачивается дополнительное количество крови. Давление в предсердиях, в период их систолы, составляет в левом 8-15 мм рт ст., а правом 3-8 мм рт ст. Отрезок времени от начала протодиастолического периода и до пресистолического, т.е. систолы предсердий, называется общей паузой. Ее продолжительность 0,4 сек. В момент общей паузы полулунные клапаны закрыты, а атриовентрикулярные открываются. Первоначально предсердия, а затем желудочки заполняются кровью. Во время общей паузы происходит пополнение энергетических запасов кардиомиоцитов, выведение из них продуктов обмена, ионов кальция и натрия, насыщение кислородом. Чем короче общая пауза, тем хуже условия работы сердца. Давление в полостях сердца в эксперименте измеряются путем пунктирования, а клинике – их катетеризацией.
Одним из важнейших показателей работы сердца является минутный объем кровообращения (МОК) - количество крови, выбрасываемое желудочками сердца в минуту. МОК левого и правого желудочков одинаков. Систолический (ударный) объем сердца - это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин - от 40-50 до 90-150 мл. СО - это разность между конечно-диастолическим и конечно-систолическим объемами. Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе. Частота сердечных сокращений — это количество сокращений сердца в минуту. Его величина равна в среднем 70 ударов в мин.
Билет 13 16.Рецепция гормонов клетками, механизмы действия стероидных и нестероидных гормонов. Роль вторичных мессенджеров в передаче сигнала Взаимодействие гормона с рецептором — это обязательный начальный этап, который запускает целый каскад реакций, в результате которого гормон осуществляет свой физиологический эффект: например, повышение синтеза специфических белков-рецепторов, повышение синтеза гормона, сокращение гладкомышечных клеток и т.п. 1. Механизм действия стероидных гормонов. Стероидные гормоны легко проникают внутрь клетки через поверхностную плазматическую мембрану в силу своей липофильности и взаимодействуют в цитозоле со специфическими рецепторами. В цитозоле образуется комплекс «гормон-рецептор», движущейся в ядро. В ядре комплекс распадается и гормон взаимодействует с ядерным хроматином. В результате этого происходит взаимодействие с ДНК, а затем — индукция матричной РНК. В ряде случаев стероиды, например, стимулируют в одной клетке образования 100-150 тыс. молекул м РНК, в которых закодирована структура лишь 1-3 белков. Итак, первый этап действия стероидных гормонов — активация транскрипции. Одновременно происходит активация РНК-полимеразы, осуществляющего синтез рибосомальной РНК (р-РНК). За счет этого образуется дополнительное количество рибосом, которые связываются с мембранами эндоплазматического ретикулума и образуют полисомы. Вследствие всего комплекса событий (транскрипции и трансляции) через 2-3 часа после воздействия стероида наблюдается усиленный синтез индуцированных белков. В одной клетке стероид влияет на синтез не более 5-7 белков. Известно также, что в одной и той же клетке стероид может вызвать индукцию синтеза одного белка и репрессию синтеза иного белка. Это происходит вследствие того, что рецепторы данного стероида неоднородны. 2. Механизм действия тиреоидных гормонов. Рецепторы находятся в цитоплазме и в ядре. Тиреоидные гормоны связываются с ядерным хроматином и индуцируют синтез 10-12 белков — это происходит за счет активации механизма транскрипции. Тиреоидные гормоны активируют синтез многих белков-ферментов,регуляторных белков-рецепторов. Тиреоидные гормоны индуцируют синтез ферментов, участвующих в метаболизме, и активируют процессы энергообразования. Одновременно тиреоидные гормоны повышают транспорт аминокислот и глюкозы через мембраны клеток, усиливают доставку аминокислот в рибосомы для нужд синтеза белка. 3. Механизм действия белковых гормонов, катехоламинов, серотонина, гистамина. Эти гормоны взаимодействуют с рецепторами, расположенными на поверхности клетки, а конечный эффект действия этих гормонов может быть — сокращение, усиление ферментных процессов, например, гликогенолиз, повышение синтеза белка, повышение секреции и т.д. Во всех этих случаях лежит процесс фосфорилювания белков-регуляторов, перенос фосфатных групп от АТФ до гидроксильных групп серина, треонина, тирозина, белка. Этот процесс внутри клетки осуществляется при участии ферментов-протеинкиназы. Протеинкиназы — это АТФ-фосфотрансферазы. Их много разновидностей, для каждого белка — своя протеинкиназа. Например, для фосфорилазы, участвующей в расщеплении гликогена, протеинкиназа называется «киназа фосфорилазы». В клетке протеинкиназы находятся в неактивном состоянии. Активация протеинкиназы осуществляется за счет гормонов, действующих на поверхностно расположенные рецепторы. При этом сигнал от рецептора (после взаимодействия гормона с этим рецептором) в протеинкиназы передается при участии специфического посредника, или вторичного мессенджера. В настоящее время выяснено,что таким мессенджером могут быть: а) ц-АМФ, б) ионы Са, в) диацилглицерин, г) какие-то другие факторы (вторичные посредники неизвестной природы). Таким образом, протеинкиназы могут быть ц-АМФ-зависимые, Са-зависимые, диацилглицерин-зависимые. Известно, что в качестве вторичного посредника ц-АМФ выступает при действии таких гормонов как АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, МСГ, АДГ, катехоламины (бета-адренорецепторного эффект), глюкагон, паратирин (паратгормон), кальцитонин, секретин, гонадотропин, тиролиберин, липотропин. Группа гормонов, для которых мессенджером является кальций: окситоцин, вазопрессин, гастрин, холецистокинин, ангиотензин, катехоламины (альфа-эффект). Для некоторых гормонов пока не идентифицированы посредники: например, СТГ, пролактин, хорионический соматомамматропин (плацентарный лактоген), соматостатин, инсулин, инсулиноподобный фактор роста и т.п. Рассмотрим работу ц-АМФ как мессенджера: ц-АМФ (циклического аденозинмонофосфата) образуется в клетке под влиянием фермента аденилатциклазы из молекул АТФ, АТФ — ц-АМФ. Уровень ц-АМФ в клетке зависит от активности аденилатциклазы и от активности фермента, который разрушает ц-АМФ (фосфодиэстеразы). Гормоны, которые действуют за счет ц-АМФ, как правило, вызывают изменение активности аденилатциклазы. Этот фермент имеет регуляторную и каталитическую субъединицы. Регуляторная субъединица тем или иным способом связана с гормональным рецептором, например, за счет G-белка. При воздействии гормона происходит активация регуляторной субъединицы (в «покое» эта субъединица связана с гуанизиндифосфатом, а под влиянием гормона она связывается с гуанизинтрифосфатом и поэтому активируется). В результате повышается активность каталитической субъединицы, которая расположена на внутренней стороне плазматической мембраны, и поэтому повышается содержание ц-АМФ. Это, в свою очередь, вызывает активацию протеинкиназы (точнее, ц-АМФ-зависимой протеинкиназы), в дальнейшем вызывает фосфорилирование, которое приводит к конечному физиологического эффекта, например, под влиянием АКТГ клетки надпочечников производят в больших количествах глюкокортикоиды, а под влиянием адреналина в ГМК, содержащие бета-адренорецепторов, происходит активация кальциевого насоса и расслабления ГМК. Итак: гормон + рецептор — активация аденилатциклазы — активация протеинкиназы — фосфорилирования белка (например, АТФ-азы). Мессенджер — ионы кальция. Под влиянием гормонов (например, окситоцина, АДГ, гастрина) происходит изменение содержания в клетке ионов кальция. Это может происходить за счет повышения проницаемости мембраны клетки для ионов или кальция за счет освобождения свободных ионов кальция из внутриклеточных депо. В дальнейшем кальций может вызвать ряд процессов, например, повышение проницаемости мембраны для ионов кальция, натрия, может взаимодействовать с микротубулярноворсинчатою системой клетки и, наконец, может вызвать активацию протеинкиназы, зависимых от ионов кальция. Процесс активации протеинкиназы связан прежде всего с взаимодействием ионов кальция с регуляторным белком клетки — кальмодулином. Это высокочувствительный к кальцию белок (например тропонина С в мышцах), что содержит 148 аминокислот, имеет 4 места связывания кальция. Все ядерные клетки имеют в своем составе этот универсальный кальцийеднальний белок. В условиях «покоя» кальмодулин находится в неактивном состоянии и поэтому не способен осуществлять свое регулирующее воздействие на ферменты, в том числе на протеинкиназы. В присутствии кальция происходит активация кальмодулина, в результате чего активируются протеинкиназы, а в дальнейшем происходит фосфорилиро вания белков. Например, при взаимодействии адреналина с адренорецепторами (бета-Ар) в клетках печени происходит активация гликогенолиза (расщепление гликогена до глюкозы). Этот процесс начинается под влиянием фосфорилазы А, что в клетке находится в неактивном состоянии. Цикл событий здесь такой: адреналин + бета-АР — повышение внутриклеточной концентрации кальция — активация кальмодулин — активация киназы фосфорилазы (активация протеинкиназы) — активация фосфорилазы В, превращение ее в активную форму — фосфорилазу А — начало гликогенолиза. В случае, когда имеет место другой процесс, последовательность событий такова: гормон + рецептор — повышение уровня кальция в клетке — активация кальмодулин — активация протеинкиназы — фосфорилирования белка-регулятора — физиологический акт. Мессенджер-диацилглицерин. В мембранах клетки являются фосфолипиды, в частности фосфатидилинозитол — 4,5-бифосфат. При взаимодействии гормона с рецептором это фосфолипид разрывается на два осколка: диацилглицерин и инозитолтрифосфат. Эти осколки являются мессенджерами. В частности, диацилглицерин дальнейшем активирует протеинкиназу, что приводит к фосфорилирования белков клетки и соответствующего физиологического эффекта. Другие мессенджеры. В последнее время ряд исследователей полагает, что в роли Мессен-Джери могут выступать простагландины и их производные. Предполагается, что каскад реакций такой: рецептор + гормон — активация фосфолипазы А2 — разрушение фосфолипидов мембраны с образованием арахидоновой кислоты — образование простагландинов типа ПГЕ, ПГФ, тромбоксанов, простациклина, лейкотриенов-физиологический эффект.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|