Оценка точности геодезических измерений
⇐ ПредыдущаяСтр 9 из 9
Измерения подразделяются на прямые и косвенные, однократные и многократные, равноточные и неравноточные. При прямых измерениях значение искомой величины получается непосредственно по показаниям прибора (например, рулеткой измеряется длина отрезка). При косвенных измерениях значение искомой величины находится вычислениями по известным формулам на основании данных прямых измерений (например, определение площади треугольника по измеренным основанию и высоте). Однократные измерения дают одно значение измеряемой величины. При многократных – величина измеряется n > 1 раз. Такие измерения необходимы для контроля, позволяют получить более надежный результат. Равноточные – измерения выполняются в одинаковых условиях: приборами одинаковой точности, исполнителями одинаковой квалификации, одними и теми же методами и равное число раз, при одинаковых условиях внешней среды. Неравноточные – измерения, выполненные в неодинаковых условиях и поэтому имеющие разную точность. Любое измерение сопровождается погрешностями измерения, которые разделяют на грубые, систематические и случайные. Грубые погрешности (ошибки, промахи, просчеты) выявляют и устраняют контрольными измерениями. Систематические погрешности искажают результат измерений всегда в какую-либо сторону. Например, мерная лента на величину D l короче эталона, или известна ее длина при одной температуре, а измерения производятся при другой, и тогда появится систематическая погрешность за счет теплового линейного расширения материала ленты. Систематические погрешности стараются исключить введением поправок. Случайные погрешности принципиально неустранимы, так как они изменяются случайным образом при повторных измерениях одной и той же величины. Борьба за уменьшение их влияния сводится к совершенствованию приборов и методов измерений, в частности к увеличению числа повторных измерений, к выбору наиболее благоприятных условий работы
Установлены следующие статистические свойства случайных погрешностей. 1. Погрешности по модулю не превосходят некоторого предела
2. Равные по модулю положительные и отрицательные погрешности одинаково возможны. 3. Малые погрешности встречаются чаще, чем большие. 4. Среднее арифметическое из погрешностей равноточных измерений стремится к нулю при неограниченном возрастании числа измерений
На этих свойствах основана оценка погрешностей и установление наиболее достоверных результатов измерений. Надежную оценку точности измерений – среднюю квадратическую погрешность отдельного измерения – предложил Гаусс:
В большинстве случаев критерий Гаусса обеспечивает более надежную оценку точности по сравнению со средним арифметическим из абсолютных значений погрешностей Пример 1. Пусть имеется два ряда измерений при условии, что точность первого ряда заведомо ниже, так как он содержит более значительные по величине погрешности (–6 и +7). I ряд: –1; +2; –6; +7; –1 II ряд: –4; +2; –4; +3; –4 Тогда
Видно, что Доказано, что при достаточно большом числе измерений случайная погрешность может быть больше 2 m в пяти случаях из ста и больше 3 m в трех случаях из 1000. Обычно принимают для более ответственных измерений Средняя q, средняя квадратическая m и предельная
Часто на практике необходимо знать не абсолютную, а относительную погрешность. Например, если одна линия измерена с точностью 1. Истинное значение измеряемой величины X известно заранее, например сумма углов многоугольника. Тогда значение погрешности измерений 2. Истинное значение измеряемой величины заранее неизвестно. Тогда, по результатам нескольких равноточных измерений, можно определить наиболее вероятное (вероятнейшее) значение измеряемой величины Но само вероятнейшее значение будет определено также с погрешностью, которую находят по формуле Пример 2. Даны результаты измерения линии (табл. 4.1). Оценить точность измерений, т.е. вычислить m, M и Т а б л и ц а 4.1 Исходные данные
Решение
3. Измеряемая величина определяется косвенным путем, то есть является функцией В теории погрешностей измерений доказано, что средняя квадратическая погрешность величины
Пример 3. В треугольнике на плане измерено основание Площадь треугольника участка равна
Найдем частные производные от функции S по аргументам b и h.
Тогда
и
Сведения, приведенные в данном пособии, являются дополнением к основным темам, изучаемым на лекциях. Они позволяют студентам получить практические навыки в решении конкретных инженерных задач.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Топографические съемки и разбивочные работы: Метод. указ. по учебной геодезической практике / Сост. С.В. Гладышев, В.С. Ермаков. Л.: ЛПИ. 1989. 44 с. 2. Инженерная геодезия. Геодезическое обеспечение строительства и эксплуатации морских и воднотранспортных сооружений: Учеб. пособие / 3. Инженерная геодезия. Геодезические разбивочные работы: Учеб. пособие / Е.Б. Михаленко, Н.Д. Беляев, В.В. Вилькевич, Н.Н. Загрядская, А.А. Смирнов. СПб.: Изд-во Политехн. ун-та, 2004. 50 с. 4. Инженерная геодезия. Решение основных инженерных задач на планах и картах: Учеб. пособие / Е.Б. Михаленко, Н.Н. Загрядская, Н.Д. Беляев и др. СПб.: Изд-во Политехн. ун-та, 2006. 105 с. 5. Аболин Е.Р., Ершов А.В., Тихонюк Н.К., Шинкевич В.А. Пособие по геодезическому обеспечению строительства. СПБ., 2006. 240 с.
ОГЛАВЛЕНИЕ
МИХАЛЕНКО Евгений Борисович ЗАГРЯДСКАЯ Наталия Николаевна БЕЛЯЕВ Николай Дмитриевич Вилькевич Валентин Войтехович ДУХОВСКОЙ Федор Николаевич СМИРНОВ Александр Александрович
ИНЖЕНЕРНАЯ ГЕОДЕЗИЯ
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|