Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Регуляция депонирования и мобилизации гликогена




Синтез гликогена

 

Гликоген синтезируется практически во всех тканях, особенно активно в печени и скелетных мышцах. Синтез происходит в период пищеварения, спустя 1-2 ч после приема углеводной пищи. Синтез гликогена требует энергии. При включении одного мономера в полисахаридную цепь протекают 2 реакции, сопряженные с расходованием АТФ и УТФ.

 

 
 

Перенос глюкозильных групп от УДФ-глюкозы на нередуцирующий конец разветвленной молекулы гликогена катализируется ферментом гликогенсинтазой. При этом образуется новая a-1,4-гликозидная связь. Образование a-1,6-связей, находящихся в точках ветвления цепей гликогена, гликогенсинтаза не способна. Эти связи образует специальный «ветвящий» фермент путем переноса коротких фрагментов (из 6-7 остатков глюкозы) с одного участка гликогена на другой с образованием a-1,6-гликозидных связей. Таким образом, наращивание молекулы гликогена осуществляется путем чередования действия этих двух ферментов.

 

Регуляция депонирования и мобилизации гликогена

 

Переключение процессов синтеза и мобилизации гликогена в печени происходит при переходе состояния пищеварения в постабсорбтивный период или состояния покоя на режим мышечной работы. В переключении этих метаболических путей в печени участвуют гормоны инсулин, глюкагон и адреналин, а в мышцах – инсулин и адреналин.

Влияние этих гормонов на синтез и распад гликогена реализуется на уровне ключевых ферментов - гликогенсинтазы и гликогенфосфорилазы – и осуществляется путем их фосфорилирования и дефосфорилирования.

 

 

Первичным сигналом для синтеза инсулина и глюкагона является изменение концентрации глюкозы в крови. Инсулин и глюкагон постоянно присутствуют в крови, но при переходе из абсорбтивного состояния в постабсорбтивное изменяется их относительная концентрация – инсулин-глюкагоновый индекс (ИГИ). Т.о., главным переключающим фактором в печени является инсулин ИГИ.

В постабсорбтивном периоде ИГИ снижается и решающим фактором является влияние глюкагона, который стимулирует распад гликогена в печени. Механизм действия глюкагона включает каскад реакций, приводящий к активации гликогенфосфорилазы:

 

аденилатциклаза (неакт)

гормон® ¯ АТФ

аденилатциклаза (акт) ® ¯ ПК А (неакт)

цАМФ® ¯ киназа фосфорилазы (неакт)

ПК А (акт)® ¯ фосфорилаза В

киназа фосфорилазы (акт)® ¯ гликоген

фосфорилаза А→ ↓

глюкозо-1-Ф

 

В период пищеварения преобладающим является влияние инсулина, т.к. ИГИ в этом случае повышается. Под влиянием инсулина происходит:

а) стимуляция транспорта глюкозы в клетки мышечной ткани.

б) изменение количества некоторых ферментов путем индукции и репрессии их синтеза. Например, инсулин индуцирует синтез глюкокиназы, ускоряя тем самым фосфорилирование глюкозы в печени.

в) изменение активности ферментов путем фосфорилирования и дефосфорилирования. Инсулин снижает содержание цАМФ в клетке (а значит и цАМФ-зависимое фосфорилирование) путем активации фосфодиэстеразы – фермента, гидролизующего цАМФ, с одной стороны. С другой стороны, он активирует фосфатазу гликогенсинтазы. Последняя дефосфорилируется и переходит в активное состояние.

 

Пентозофосфатный путь превращений глюкозы

ПФП является альтернативным путем окисления глюкозы. Он не приводит к синтезу АТФ, но поставляет клеткам кофермент НАДФН·Н+, а также обеспечивает клетки рибозой. НАДФН·Н+, использующийся как донор водорода в реакциях восстановления, участвует в реакциях биосинтеза жирных кислот и холестерина, а также в реакциях гидроксилирования, играющих важную роль в функционировании микросомальной цепи обезвреживания чужеродных веществ. Рибоза участвует в синтезе нуклеотидов и нуклеиновых кислот, а также аминокислоты гистидина.

ПФП может функционировать в печени, жировой ткани, молочной железе, коре надпочечников, эритроцитах и органах, где активно протекают восстановительные синтезы, например синтез жирных кислот. Все ферменты ПФП локализованы в цитозоле.

Химизм

1 реакция: дегидрирование глюкозо-6-фосфата

Реакцию катализирует глюкозо-6-фосфатдегидрогеназа, ключевой фермент пентозофосфатного цикла. Образовавшийся в ходе реакции 6-фосфоглюконолактон - соединение нестабильное, которое спонтанно, либо под действием специфической лактоназы гидролизуется.

2 реакция: гидролиз 6-фосфоглюконолактона с образованием 6-фосфоглюконата. Равновесие суммарной реакции сильно смещено в сторону образования НАДФ·Н+.

3 реакция: дегидрирование и декарбоксилирование 6-фосфоглюконата с образованием рибулозо-5-фосфата.

 
 

 

Превращение глюкозо-6-фосфата до рибулозо-5-фосфата принято называть окислительной фазой пентозофосфатного цикла. Фаза от рибулозо-5-фосфата до образования вновь глюкозо-6-фосфата называется неокислительной или анаэробной фазой этого цикла.

4 реакция: изомеризация пентозофосфатов. Рибулозо-5-фосфат под действием ферментов рибозофосфатизомеразы и рибулозо-5-фосфат-3-эпимеразы может обратимо изомеризоваться в другие пентозы: рибозо-5-фосфат, ксилулозо-5-фосфат.

 
 

В некоторых случаях ПФП на этом заканчивается. И тогда суммарное уравнение реакции выглядит так:

 

глюкозо-6-фосфат + Н2О + 2НАДФ+ ® рибозо-5-фосфат + 2НАДФН·Н+ +СО2

 

Однако многие клетки нуждаются в большем количестве НАДФН·Н+ (для восстановительных синтезов), чем требуется рибозо-5-фосфата (для включения в нуклеотиды). В таких случаях рибозо-5-фосфат превращается в глицеральдегид-3-фосфат и фруктозо-6-фосфат под действием двух ферментов: транскетолазы и трансальдолазы. Эти ферменты создают обратимую связь между ПФП и гликолизом, катализируя следующие реакции:

5) ксилулозо-5-фосфат + рибозо-5-фосфат ® седогептулозо-7-фосфат + глицеральдегид-3-фосфат

6) седогептулозо-7-фосфат + глицеральдегид-3-фосфат ® эритрозо-4-фосфат + фруктозо-6-фосфат*

7) ксилулозо-5-фосфат + эритрозо-4-фосфат ® фруктозо-6-фосфат* + глицеральдегид-3-фосфат*

Суммируя эти реакции, получаем: 2 ксилулозо-5-фосфат + рибозо-5-фосфат ® 2 фруктозо-6-фосфат + глицеральдегид-3-фосфат

Итак, избыток рибозо-5-фосфата, образованный в ПФП, может превращаться в метаболиты гликолиза.

 

Метаболизм фруктозы

Фруктоза, поступающая в организм человека, образуется либо при гидролизе сахарозы, либо поступает в составе растений, являясь их основным сахаром. У здорового человека фруктоза может превращаться по двум путям: 1) под действием гексокиназы (в печени, мышцах, почках, жировой ткани) образуется фруктозо-6-фосфат. Однако, сродство этого фермента к фруктозе гораздо ниже, чем к глюкозе, поэтому в присутствии глюкозы реакция фосфорилирования фруктозы протекает с низкой скоростью; 2) под действием фруктокиназы (в печени, почках и кишечнике) образуется фруктозо-1-фосфат. Фермент обладает высоким сродством к своему субстрату и в присутствии глюкозы становится основным путем метаболизма фруктозы.

 

 
 

Фруктоза включается в гликолиз на стадии триозофосфатов.

Е1 – фруктокиназа

Е2 – фруктозо-1-фосфатальдолаза

Е3 - триозофосфатизомераза

Расщепление фруктозы по пути гликолиза происходит быстрее, чем глюкозы, т.к. минуется стадия, катализируемая фосфофруктокиназой-I.

 

Метаболизм фруктозы в сперматозоидах

Фруктоза является основным источником энергии для сперматозоидов. Она образуется в семенных пузырьках из глюкозы в результате 2-х последовательных реакций:

1)D-глюкозы + НАДФН·Н+ ® D-сорбитол + НАДФ+

реакция катализируется сорбитолдегидрогеназой.

2) D-сорбитол + НАД+ ® D-фруктоза + НАДН·Н+

реакция катализируется сорбитолдегидрогеназой.

Концентрация фруктозы в семенной жидкости может достигать 10 мМ.

 

Метаболизм галактозы

Галактоза, поступающая в организм человека, образуется при гидролизе лактозы (молочного сахара). Галактоза включается в метаболизм путем превращения в глюкозо-1-фосфат.

 
 

Образовавшийся глюкозо-1-фосфат после превращения в глюкозо-6-фосфат подключается к основным путям метаболизма глюкозы.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...