Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Движение и реорганизация упругих систем

Мы не знаем, что происходит внутри естественных тел и происходит ли что-нибудь, когда они претерпевают ускорения и приводятся в движение, т.к. слабо знаем, как они устроены. Искусственные тела дают нам возможность это выяснить. Оказывается, изменения скорости тел невозможны без некоторой внутренней их реорганизации. Рассматривая их движение, мы откроем здесь некоторые принципиально важные свойства, присущие любому объемному телу или процессу. Эти свойства являются следствием всеобщей и неизбежной причины: ограниченности скорости полей или сигналов, объединяющих тело, процесс или их оба в единый и цельный объект. Потому и сами свойства носят всеобщий и неизбежный характер.

При первой же попытке представить себе как движутся тела, построенные подобно твердому телу - из каких-нибудь дискретных элементов, занимающих устойчивые положения или потенциальные ямы в каком-нибудь поле, обнаруживается неожиданная проблема. Дело в том, что потенциальная яма, в которой находится элемент, в любом случае образована полями, излученными другими элементами из других мест чуть раньше и прошедшими некоторый путь. Поля движутся с конечной скоростью, поэтому, если тело привести в движение (например, все его элементы сразу), потенциальные ямы начнут двигаться с некоторым запаздыванием и будут отставать от элементов; они образуются там, где элементы были в момент излучения поля и откуда уже ушли. Элементы попадают "на склоны ям", и появляются силы, останавливающие движение. Движения по инерции не получается. Какими бы ни были поля и силы, создающие целостность тела, эта проблема остается как неизбежное следствие самой целостности и ограниченности скорости полей.

Чтобы привести, например, все три диполя на рисунке 1 в совместное движение вправо или влево, нужно приложить к ним силы, выводящие диполи из устойчивых положений. Система будет двигаться лишь до тех пор, пока ее движут внешние силы. Поля будут всегда отставать от диполей, и будут действовать силы, движущие диполи назад к устойчивым положениям. Действие этих сил не прекратится, пока что-то не изменится, и элементы не будут двигаться в "ямах". Что же должно измениться, как и почему? Чтобы эти силы не возникали вовсе, нужно, чтобы потенциальные ямы заранее, еще до начала движения, излучались туда, где окажутся элементы, когда поля дойдут от своих источников до "ям". Если же изменения начнутся после начала движения (что и происходит в системах), то эти силы будут действовать при ускорениях, выступая как силы инерции.

Пока поля и силы, создающие целостность тел, оставались в тумане, эта проблема не возникала. Теперь же, отмахнувшись от нее, мы не получим стройной картины движения, а обратив на нее внимание, попадаем в трудное положение. Ведь инерция считается фундаментальным свойством материи, а мы видим какую-то инерцию вместе с ее причиной. И избавиться от нее не можем. Это та же самая инерция или какая-то вторая? Мы заниматься этим не будем, но отметим: классическая физика подошла к вопросу о происхождении инерции масс. Рассмотрим это явление с другой целью и на совсем ином примере, попроще.

Пусть два автоматических подвижных объекта поддерживают расстояние между собой следующим способом. Действуя каждый по своим часам, они одновременно излучают периодические импульсы звука и, находясь на заданном (устойчивом) расстоянии, принимают их друг от друга точно в тот момент, когда излучают очередной импульс. Запаздывание сигнала к этому моменту означает, что расстояние велико, и объект движется, сокращая расстояние. При опережении - увеличивает расстояние.

Если эту пару привести в совместное движение, то задний в движении объект будет принимать сигналы с опережением, т.к. движется навстречу звуку, и будет тормозить, пытаясь увеличить расстояние. Передний же объект будет получать сигналы с запаздыванием и тоже тормозить, пытаясь сократить расстояние. Объекты остановятся. Система не может двигаться по инерции. Система иная, но явление то же и та же причина: конечная скорость сигналов и целостность системы.

Чтобы пара двигалась, нужно сдвинуть часы переднего объекта назад или заднего - вперед на некоторый временной интервал, так, чтобы компенсировать разность во времени хода сигналов вперед и назад при данной скорости. Точнее: сдвинуть во времени текущие в объектах процессы (приема-передачи и обработки сигналов). Тогда объекты будут поддерживать эту скорость и препятствовать ее изменению. Расстояние же между ними уменьшится так, чтобы сигналы снова проходили его взад-вперед за тот же период, несмотря на движение. Если скорость звука в воздухе равна "с", скорость объектов относительно воздуха - "v", то скорость сигнала относительно объектов будет равной в одну сторону c-v, в другую c+v, а средняя скорость сигнала на всем пути окажется равной c(1 - v22), потому расстояние между объектами тоже уменьшится пропорционально величине 1 - v22. При движении в направлении, перпендикулярном расстоянию, размеры уменьшатся как корень квадратный из этой величины.

Итак, движение здесь сокращает размеры системы, а ее устойчивая скорость определяется временным интервалом. Заметим, что, не зная, какова скорость объектов относительно среды, несущей звуковой сигнал, мы не сможем определить, как изменяется расстояние между ними. Поэтому, избегая такой неопределенности в дальнейшем, будем полагать, что все наши объекты погружены в какую-либо среду (газообразную, жидкую), которая и служит проводником электромагнитных или звуковых волн или сигналов. Кроме того, рассматривая движение электромагнитных объектов в средах, мы избегаем столкновения с теорией относительности, которая на движение в средах не распространяется.

Те же изменения будут происходить и в искусственных телах - самоорганизующихся системах. Например, в системе из генераторов. Если поместить такую систему в электромагнитную среду и привести среду в движение, то движение среды будет сносить поля и образуемые ими устойчивые положения в сторону своего движения, и элементы окажутся вне устойчивых положений. Возникнут силы, увлекающие систему вслед за средой и противодействующие их относительному движению. Здесь тоже, чтобы этих сил не стало, нужно сдвинуть во времени колебательные процессы, текущие в генераторах.

Чтобы говорить здесь о времени, мысленно сделаем так: подключим к генераторам электронные счетчики колебаний и выведем результаты счета – целые числа колебаний и их дробные доли - на часовые табло. Получатся обычные электронные часы, но связанные в единую систему, т.к. генераторы входят в синхронизм самопроизвольно, подстраиваются друг к другу; то же происходит и с часами.

Пусть часы при неподвижной системе показывают одинаково. Через некоторое время после начала движения установится новый синхронизм, появятся разности фаз колебаний. Приведя в движение среду, будем говорить о движении системы относительно среды. Поля, которые и служат сигналами синхронизации генераторов, движутся назад (относительно системы) быстрее, чем вперед, поэтому колебания в генераторах, передних в движении, отстанут во времени и по фазам от колебаний в задних генераторах, что мы и увидим на часах. Мы увидим временные интервалы между локальными колебательными процессами в виде разностей в показаниях часов. Установятся временные интервалы, точно соответствующие скорости движения. Каждый последующий в движении процесс опережает предыдущего на некоторый временной интервал.

Когда временные интервалы соответствуют скорости, силы противодействия исчезают. Размеры систем тоже изменяются, уменьшаясь с увеличением скорости, поскольку уменьшается средняя скорость электромагнитного поля в промежутках между элементами, уменьшаются длины стоячих волн и расстояния между элементами. После этого потенциальные ямы излучаются точно туда, где проходят движущиеся элементы, система движется по инерции, и силы противодействия не возникают.

Тройка диполей, показанная на рис.1, при движении вправо по инерции будет выглядеть, как показано на рис.2. Здесь диполь 3 (задний) опережает в своем вращении диполя 2. Его отрицательный заряд уже был вверху некоторое время назад, когда показанный на рисунке фрагмент волны проходил через него. Диполь 1 (передний) отстает в своем вращении. Его отрицательный заряд окажется вверху тогда, когда через него будет проходить волна, излученная диполем 2 и показанная на рисунке. Диполи 1 и 3 и в этом положении параллельны полю, но оно не параллельно плоскости рисунка и потому не показано. Таким образом, все три диполя движутся, оставаясь в устойчивых положениях. Но при ускорениях они не могут мгновенно повернуться относительно друг друга. Для этого нужно двигать систему некоторое время, преодолевая силы устойчивости.

. .

Ели бы все отрицательные заряды были здесь в верхнем положении, то на диполи 1 и 3 действовали бы силы, движущие их назад - в те участки поля, что показаны на рисунке. А их излучения оказались бы слева от диполя 2 - сзади, и на него тоже действовали бы такие силы. Кроме того, действовали бы силы, стремящиеся довернуть диполи в положения, показанные на рисунке 2. До тех пор, пока не сформируются временные интервалы, т.е. пока диполи не повернутся относительно друг друга, силы противодействия не исчезнут, и система не будет двигаться по инерции.

Системе диполей на рис.2 сопоставлена система часов, стрелки которых вращаются как бы вместе с диполями. Разность хода часов показывает временной интервал - относительное опережение или запаздывание местных процессов вращения и излучения. Изображая элементы (точнее: процессы в них) в виде часов в системе координат, можно одним значком показать и текущую фазу процесса, и его координаты. Так и сделаем потом.

С точки зрения классической физики, в природе не существуют статические поля, способные удерживать элементы на расстояниях друг от друга, создавая объемные тела и структуры, и мы вынуждены полагать, что для этого необходимы когерентные волновые поля и процессы. Значит, целостность тела или структуры возможна лишь тогда, когда в них присутствует объемный когерентный процесс - некая система "местных часов", единого внутреннего времени. Любая пространственная структура, если цела, содержит в себе такую систему "часов". А изменение скорости структур связано с перестройкой этой системы единого времени и без нее не происходит.

Самоорганизующаяся система есть единый и цельный электромагнитный объект, поэтому конечный результат изменений, вызванных в ней движением, описывается преобразованиями Лоренца для электромагнитных объектов и процессов, движущихся в пустом пространстве или в той электромагнитной среде, в которую она помещена и сквозь которую движутся в ней волны. Мы привыкли понимать Лоренцево "местное время" как нечто сугубо теоретическое и абстрактное. Теперь же мы знаем объект, в котором можно разместить вполне реальные часы местного времени. Мы используем это в следующем разделе, где рассмотрим свойства самоорганизующихся систем, применяемых в качестве меры пространства-времени.

Современная теория рассматривает преобразования Лоренца только как свойство пустого пространства-времени. Но лучше представлять себе, что электромагнитный объект находится в жидкой электромагнитной среде (в жидком диэлектрике или ферромагнетике), и что в движение приводится среда, а объект неподвижен. В таком случае объект также преобразуется по Лоренцу. Но становятся наблюдаемыми те изменения, что происходят в нем при ускорениях среды: сокращение размеров и перестройка системы часов, а также "замедление времени" (т.е. замедление колебаний). Наблюдаемы и те силы, что возникают при ускорениях, увлекая объект вслед за средой и выступая в качестве сил инерции объекта относительно среды или инерции среды относительно объекта. Объект может быть любым, но лучше использовать самоорганизующиеся системы, т.к. в них, в отличие, например, от поля статических зарядов, имеются четко определенные расстояния и могут быть установлены часы местного времени.

С одной стороны, преобразования Лоренца описывают реорганизацию в электромагнитном объекте, производимую в нем движением, и это было известно. С другой стороны - временные интервалы управляютздесь скоростью объекта, выступают как причина и необходимое условие движений по инерции, и это нечто новое, ранее не известное. Противодействуют изменениям скорости те же силы, что создают целостность тела и его прочность, в естественных телах они достаточно велики, и, если бы реорганизации в них не было, скорость тел не могла бы меняться.

Силы устойчивости, оказывается, создают инерцию движения. Если покоящийся объект подвергнуть такому изменению, создать в нем систему временных интервалов, то возникнут внутренние силы, движущие объект со скоростью, соответствующей этому изменению. Как выполняются при этом законы сохранения - нас здесь не интересует. Они так или иначе выполняются, в противном случае - только интересней.

И такие случаи, на первый взгляд, возможны. Например, такой. Пусть множество синфазных излучателей (излучающих диполей) находятся в устойчивых положениях под действием статических сил притяжения и электродинамических сил, располагаются при этом на минимальных расстояниях друг от друга (меньших, чем длина волны) и образуют структуру в виде длинной прямой линии. Такая структура излучает, в основном, расходящиеся от нее цилиндрические волны. Если теперь изменить фазы излучателей так, чтобы каждый последующий излучатель опережал предыдущего по фазе, то в ней возникнут внутренние силы, движущие ее, условно говоря, вперед. Излучение из нее также изменится. Теперь она будет излучать в основном расходящиеся конические волны, но не назад, а тоже вперед. Здесь никак нельзя сказать, что система испытывает ускорение под действием реактивных сил отдачи, создаваемых излучением.

Когда эта система погружена в электромагнитную среду, то действуют силы, движущие систему вперед, а среду назад. Но выполняется ли закон сохранения импульса вне среды? Напомню, что классическая электромагнитная теория создавалась в рамках теории эфира, и с ней согласуется. С этой точки зрения здесь ничто не противоречит закону сохранения, т.к. в данном случае действуют электромагнитные силы взаимодействия со "светоносной" средой, заполняющей пространство. Теория дальнодействия тоже не испытывает здесь трудностей. Таким образом, классическая физика предлагает Вам принципиально новый космический движитель, не требующий выброса материи.

Современная же теория, отрицая "эфир", приводит к противоречию с законом сохранения, а я, автор, не собираюсь доводить эти исследования до конца и кого-либо убеждать. Полагаю, моё дело - придумать пример и поставить вопрос, а не отвечать на него. Истинный ученый всегда любопытен, потому кто-нибудь из таковых разберется и найдет ответ. Однако закон сохранения импульса не был доказан для общего случая силового воздействия на предметы. Он верен для классической механики, для электростатики, магнитостатики, но в области электродинамики был рассмотрен лишь на отдельных примерах (отражение плоской волны) и принят декларативно, т.е. пока еще вызывает сомнения.

Не будем здесь делать выводов и что-либо утверждать, но обратим внимание на следующее. Установлено в экспериментах, что некоторые периодические процессы (а может быть и все процессы вообще) замедляются полем тяготения. Тогда силы тяготения самоорганизующихся систем к массам могут быть полностью объяснены этим замедлением как силы внутренние. В нижней части системы колебания замедляются более, чем в верхней, что в условиях постоянной самосинхронизации колебаний приводит не к рассогласованию их по частотам, а лишь к отставанию колебаний в нижней части по фазам. Образуется система временных интервалов, и система приходит в движение с ускорением вниз. Если же она на что-либо опирается, то ее нижняя часть оказывается сжатой, что приводит к уменьшению расстояний между ее элементами, в связи с чем поля (а они служат сигналами синхронизации колебаний) проходят эти расстояния быстрее, что приводит к некоторому повышению частот колебаний в элементах сжатой части системы, что и компенсирует их понижение.

Есть случаи, когда временные интервалы не могут изменяться. Тогда силы противодействия движению не исчезнут до тех пор, пока скорость системы не станет соответствовать временным интервалам. Например, если система имеет форму замкнутого кольца и вращается в своей плоскости вокруг центра, то сумма временных интервалов по периметру кольца может быть равной только целому числу периодов колебаний и не может меняться плавно. Поэтому кольцо имеет лишь дискретный ряд устойчивых скоростей вращения. Здесь мы видим механизм квантования движений.

На рисунке 3 показано такое кольцо. Элементы и процессы в нем представлены в виде часов, показывающих текущую фазу процесса. Квантуются все связанные волновыми полями движения, и мы не привыкли к этому лишь потому, что сильных волновых полей и очень больших скоростей нет в нашей практике. А здесь показан лишь наиболее простой и наглядный пример квантования.

Рассчитывая устойчивые формы такой вот структуры: кольцо из одинаковых электрически заряженных источников волновых излучений и противоположно заряженное тело в центре, получим серию устойчиво вращающихся в поле колец, диаметры которых и число элементов в которых (точнее: число мест в кольце) пропорциональны 2n2 (2, 8, 18, 32 …), т.е. такие структуры во многом подобны атому. Правда, мы уже потеряли уверенность в том, что электроны вообще вращаются вокруг ядра, поскольку электростатические силы притяжения могут быть, в принципе, уравновешены не только силами инерции, но и электродинамическими силами отталкивания. Поскольку электроны – тоже какие-то колебательные системы, то они могут складываться в подобные структуры естественным образом. У нас еще недостаточно причин для уверенности, но уже нельзя говорить, что классическая физика не способна объяснить строение атома.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...