Исходные данные для проектирования
В качестве базовых вариантов конструкции предлагается использовать серийно выпускаемые генераторы серии СГ2 или СГД2. Конструктивное исполнение генератора СГ2 по способу монтажа – IM 1001 (генератор на лапах с двумя подшипниковыми щитами и горизонтальным валом, конец вала – цилиндрический), степень защиты генератора – IP 23 (защищённая), способ охлаждения – ICA 01 (с самовентиляцией). Конструктивное исполнение генератора СГД2 по способу монтажа – IM 7311 (генератор со стояковыми подшипниками на приподнятых лапах, с горизонтальным валом, конец вала – цилиндрический), степень защиты – IP 11 (защищённая), способ охлаждения – ICA 01 (с самовентиляцией). Частота тока – 50 Гц, cosφ = 0,8 (отстающий ток), режим работы – продолжительный, соединение трёхфазной обмотки в звезду. Основные исходные данные (номинальные параметры): номинальная мощность
ПРОЕКТИРОВАНИЕ СИНХРОННОГО ГЕНЕРАТОРА Выбор главных размеров активной части генератора Проектирование синхронного генератора, как и любой другой электрической машины, начинают с выбора главных размеров: внутреннего диаметра статора D и расчетной длины l δ. Как указывалось, эта задача не имеет однозначного решения, поэтому для нахождения оптимальных значений D и l δ приходится рассчитывать ряд вариантов, для сокращения числа которых целесообразно воспользоваться рекомендациями, полученными на основе накопленного опыта проектирования. Для предварительного определения диаметра D можно воспользоваться зависимостями D=f (S' H), рис.1.1, соответствующими усредненным диаметрам выполненных машин. Расчетная электромагнитная мощность
где k Е – отношение ЭДС обмотки якоря при номинальной нагрузке Е н к номинальному напряжению U н, предварительно принимают k E≈1,08; Р н – номинальная мощность, кВт; cosφн – номинальный коэффициент мощности.
Рис. 1.1 Число пар полюсов р и полюсное деление τ, м, равны соответственно
Предварительное значение внешнего диаметра статора Da, м, Da=k Д D. Значения k Д в зависимости от 2 р приведены в табл. 1.1. Таблица 1.1
Полученное значение Da округляют до ближайшего нормализованного диаметра (табл. 1.2). От выбранного диаметра Da зависят габариты и высота оси вращения h проектируемой машины. В случае корректировки Da следует произвести пересчёт диаметра D и полюсного деления τ: D = Da / k Д;
в этом случае для k Д берут среднее значение при данном 2 р. Расчетная длина l δ машины, м,
где αδ – расчетный коэффициент полюсного перекрытия (определяется по рис. 1.2); k B – коэффициент формы поля (рис. 1.2); k об1 – обмоточный коэффициент обмотки статора; А – линейная нагрузка статора, А/м; В δн – максимальное значение индукции в воздушном зазоре при номинальной нагрузке, Тл.
Рис. 1.2 Так как = 0,65–0,68; k B= 1,16–1,14, а их произведение Обмоточный коэффициент k об1 предварительно принимают равным 0,92.
Линейную нагрузку А и индукцию В δн при U н = 380–6600 В выбирают по рис. 1.3 и 1.4. При U н = 10000 В величину В δн можно также выбирать по рис. 1.4, а линейную нагрузку А следует снизить на 10–15 %, так как из-за более толстой пазовой изоляции ухудшается охлаждение обмотки якоря.
Рис 1.3 Выбранные значения А и В δн являются предварительными и в дальнейшем при необходимости их можно изменять. При этом следует иметь в виду, что чем больше произведение А · В δн, тем меньший активный объем D2l δ будет иметь проектируемая машина. Однако каждая машина имеет свои верхние пределы А и В δн.
Рис. 1.4 Приведенные на рис. 1.3 верхние значения А соответствуют серийным машинам защищенного исполнения с косвенным воздушным охлаждением, с изоляцией класса нагревостойкости В. Верхний предел индукции В δн ограничен насыщением магнитной цепи, в основном – насыщением зубцового слоя. Кроме того, с увеличением отношения А/ В δн возрастают индуктивные сопротивления машины. Определив расчетную длину l δ, находят отношение
причем чем длиннее машина (больше λ), тем хуже условия её охлаждения, а чем короче, тем больше доля лобовых частей в длине витка обмотки и тем больше потери в обмотке. Значения λ для современных машин указаны на рис. 1.5.
Рис. 1.5 Для улучшения охлаждения сталь статора обычно разбивают на несколько пакетов длиной l пак ≈ 4–5 см, между которыми делают радиальные вентиляционные каналы шириной b к = 10 мм (рис. 1.6).
Рис. 1.6 При наличии вентиляционных каналов истинная длина статора будет больше расчетной и предварительно может быть принята
Длину всех пакетов чаще всего берут одинаковой. Число вентиляционных каналов в этом случае
причем n K округляют до целого числа. После округления n K уточняют длину пакета
и округляют ее до одного миллиметра. Суммарная длина пакетов сердечника
Проекции синхронного генератора приведены на рис. 1.7.
Рис. 1.7 Синхронная машина имеет радиальную систему вентиляции, обеспечиваемую вентиляционным действием полюсов ротора и вентиляционными лопатками, направляющими часть воздушного потока на лобовые части обмотки статора (рис. 1.8). Охлаждающий воздух в машинах защищённого исполнения входит через вентиляционные окна в подшипниковых щитах (рис. 1.8, а), проходит вдоль лобовых частей обмотки статора, через междуполюсное пространство ротора (охлаждая обмотку возбуждения), радиальные вентиляционные каналы статора и выходит через боковые жалюзи. Схема вентиляции машины закрытого исполнения с установленным в верхней части теплообменником показана на рис. 1.8, б.
Рис. 1.8. Схема вентиляции синхронных машин
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|