Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение коэффициента нагрузки и степени точности передачи




Исходные данные

 

1. Рассчитать закрытую цилиндрическую косозубую передачу (рис. 1).

2. Рассчитать и сконструировать ведомый вал передачи.

 

 

Исходные данные:

N2 = 17 кВт

n1 = 3000 об/мин

n2 = 525 об/мин

L = 7 лет

Ксут = 0,6

Кгод = 0,5

 

 

 

Рис. 1. Схема редуктора и график нагрузки

 

 

 

Расчёт закрытой цилиндрической косозубой передачи

 

Оперделяем ресурс передачи

 

Ресурс передачи определяется по зависимости:

 

t = 24∙ Ксут ∙365 Кгод∙L (ч)

 

где Ксут – суточный коэффициент работы передачи;

Кгод – годовой коэффициент работы передачи;

L – число лет работы передачи.

Тогда:

t = 24∙0,6 ∙365∙0,5 ∙7 = 18396 (ч)

 

Находим эквивалентное число циклов нагружения зубьев при расчете на контактную прочность

 

Nц.экв =(60/ M3max) (M3maxtmaxnmax + M3 1 t 1 n 1+…+ M 3 qtqnq)

 

При n1 = n = Const, Mmax = Mн, для нашего случая эквивалентное число циклов нагружения зубьев шестерни

 

Nц.экв.1 =(60 n1 / M3н) (M3н 0,1 t +(0,65 Mн)3 0,4 t +(0,2 Mн)30,5 t)

 

Сократив M3н, получим:

 

Nц.экв.1 = (60 n1) (0,1 t +(0,65)3 0,4 t +(0,2)3 0,5 t)

 

Отсюда

Nц.экв.1 = (60∙3000)(0,1∙18396 + (0,65)3∙0,4∙18396+ (0,2)3∙0,5∙ 18396) = 70,8∙107

 

Эквивалентное число циклов нагружения для зубьев колеса

Nц.экв.2 = Nц.экв.1/U

где U - передаточное число

U = n1/ n2

U = 3000/525 = 5,71

 

Nц.экв.2 = 70,8∙107/5,71 = 12,4∙107

 

Находим эквивалентное число циклов нагружения зубьев при расчете на изгибную прочность

 

Nц.экв = (60/ M9max) (M9max tmax nmax + M91 t1 n1 +…+ M9q tq nq)

 

При n1 = n = Const, Mmax = Mн, для нашего случая

Nц.экв.1 = (60 n1/M9н) (M9н 0,1 t + (0,65 Mн)9 0,4 t +

+(0,2 Mн)9 0,5 t)

 

Сократив M9н , получим:

 

Nц.экв.1 = (60 n1) (0,1 t +(0,65)9 0,4 t +(0,2)9 0,5 t)

 

Nц.экв.1 = (60∙3000)(0,1∙18396 + (0,65)9∙0,4∙18396+ (0,2)9∙0,5∙ 18396) = 35,8∙107

 

Эквивалентное число циклов нагружения для зубьев колеса

Nц.экв.2 = Nц.экв.1/U

Nц.экв.2 = 35,8∙107/5,71= 6,26∙107

 

Выберем материал зубчатой пердачи

 

Примем для передачи марку стали ― 40Х с термической обработкой – улучшение, для которой

 

σF lim1 = 1,8HB = 1,8∙280 = 504 МПа – для шестерни;

σF lim2 = 1,8HB = 1,8∙250 = 450 МПа – для колеса;

σH lim1 = 2∙HB + 70 = 2∙280 + 70 = 630 МПа – для шестерни;

σH lim2 = 2∙HB + 70 = 2∙250 + 70 = 570 МПа – для колеса;

σВ = 880 МПа.

Рассчитаем коэффициент долговечности для контактной прочности

 

Для нормализуемой и улучшенной сталей (HB ≤ 350)

,

Если Nц.экв ≥ 107, то принять КHL = 1,0.

Для закаленных сталей и чугуна базовое число циклов принимают NБ = 25∙107, а минимальное значение KHL = 0,585. Если Nц.экв ≥ 25∙107, то принять КHL = 0,585.

 

Согласно приведённым требованиям для рассматриваемого варианта получим:

КHL1 = 0,492 при Nц.экв1 = 70,8·107

КHL2 = 0,657 при Nц.экв2 = 12,4·107

 

Определеним коэффициент долговечности

При расчете на изгиб

 

,

Согласно кривой усталости, если Nц.экв ≥ 5∙106, то надо принять КFL = 1,0.

Следовательно, принимаем КFL1 = КFL2 = 1,0.

 

 

Определение допускаемых напряжений.

Допускаемые контактные напряжения

 

[σ]H = σH lim KHL ZR ZV /SH,

 

 

где σH lim – предел контактной выносливости при базовом числе циклов нагружения;

 

KHL – коэффициент долговечности;

ZR – коэффициент, учитывающий шероховатость поверхности зубьев;

ZV – коэффициент, учитывающий окружную скорость (для упрощения расчетов принимаем ZR ZV = 1,0);

SH – коэффициент запаса (SH =1,2)

 

[ σ ] H1 = 630∙0,492∙1/1,2 = 258,3 МПа

[ σ ] H2 = 570∙0,657∙1/1,2 = 312,07 МПа

 

Для косозубых и шевронных колёс в качестве расчётного принимаем среднее арифметическое из полученных значений:

 

[σ]H = ([σ]H1 +[σ]H2) /2

 

[σ]H = (258,3+312,07)/2 = 285,18 МПа

 

Допускаемые изгибные напряжения

 

Допускаемые изгибные напряжения выбираем для двух случаев нагружения.

[σ]F = σF lim KFL ZR ZV /SH,

 

[σ]F1 = 504∙1∙1/1,2 = 420 МПа

[σ]F2 = 450∙1∙1/1,2 = 375 МПа

 

Одностороннее действие нагрузки (отнулевой цикл)

 

,

где [ n ] – требуемый коэффициент запаса прочности, [ n ] = 2;

КFL – коэффициент долговечности при изгибе;

Кσ – эффективный коэффициент концентрации напряжений у ножки зуба, Кσ = 1,5;

σ-1 – предел выносливости сталей:

 

σ-1 ≈ 0,35 σВ + 85

σ-1 = 0,35∙880 + 85 = 393 МПа

0]F = 1,3∙393/(2∙1,5) ∙1 = 170,3 МПа

 

Переменное направление нагрузки (симметричный знакопеременный цикл)

-1]F = 393/(2·1,5) ·1 = 133,33 МПа

 

Определение коэффициента нагрузки и степени точности передачи

Определим расчётную нагрузку, которая потребуется для определения основных параметров зацепления.

 

 

Мрасчн К = Мн Кдин Ккц,

 

где Мн – момент нагрузки;

К – коэффициент нагрузки;

Кдин – коэффициент динамичности, зависит от величины окружной скорости и точности изготовления;

Ккц – коэффициент концентрации нагрузки, учитывает неравномерность распределения нагрузки по длине зуба за счет деформации валов и колес.

Согласно задания (рис. 1П) имеем симметричное расположение колес, поэтому К = Кдин Ккц = 1,3.

Мн = М1 = N2 ·30/(π·n1·η), Нм,

 

где М1 – крутящий момент на валу шестерни, Нм;

N2 – мощность на колесе, Вт;

η – КПД передачи (η = ηзк · ηпп)

 

η = ηзк · ηпп = 0,97·0,99 = 0,95

 

ηзк ‑ КПД зубчатой конической передачи

ηпп ‑ КПД подшипников

 

Мн = 17·103·30/(3,14·3000·0,95) = 57 Нм

 

Мрасч = 57 ·1,3 = 74,1 Нм

 

Назначаем коэффициент ширины зуба Ψа

 

Из стандартных значений (ГОСТ 2185-88) выбираем для косозубых передач Ψа = 0,5.

При выборе учитываем рекомендации:

1. Меньшие значения рекомендуется применять для коробок передач, а большие – для редукторов;

2. При консольном расположении колес значение ψа следует принимать меньше;

3. Для тихоходной ступени значение ψа следует принимать большим, чем для быстроходной;

4. Увеличение точности изготовления и монтажа позволяет увеличить значение ψа.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...