Задачи на непосредственное вычисление вероятности события
Стр 1 из 2Следующая ⇒ Примеры решения задач Комбинаторные задачи При решении таких задач часто одновременно применяются и правила и формулы комбинаторики. Продемонстрируем это на примерах. Пример 1. На книжной полке стоят 8 различных книг, из них 3 книги – по математике. Сколькими способами можно расставить эти книги так, чтобы а) книги по математике стояли рядом; б) книги по математике рядом не стояли? а) Будем считать 3 книги по математике за одну, тогда получим 6 книг, которые можно расставить на полке
б) Чтобы книги по математике рядом не стояли, можно использовать 6 мест: 4 места между книгами не по математике и по одному справа и слева от них. Число способов выбрать 3 места для книг по математике равно
Пример 2. Сколько имеется 5-значных чисел, в записи которых а) ровно один раз встречается цифра 5; б) хотя бы один раз встречается цифра 5; в) встречается не более одной пятерки? а) Запишем 5-значное число в виде:
Таким образом, количество 5-значных чисел, удовлетворяющих условию а) равно
б) Чтобы ответить на этот вопрос, нужно из общего количества 5-значных чисел вычесть те числа, где ни разу не встречается цифра 5. Найдем общее количество 5-значных чисел: в) 5-значные числа, в которых не более одной пятерки, это числа, в которых нет ни одной пятерки, и числа, в которых ровно одна пятерка. Количество тех и других установлено в пунктах а) и б). Зная их, найдем общее количество нужных нам чисел: Пример 3. Сколько можно составить автомобильных номеров, если в нем не более 4-х цифр? Согласно условию задачи номер может содержать или одну цифру, или две, или три, или четыре цифры. Учитывая, что цифры в номере могут повторяться, а номер может начинаться с 0, найдем количество автомобильных номеров: Пример 4. В магазине продаются 6 видов пирожных. Сколькими способами можно составить набор из 4-х пирожных и из 4-х различных видов пирожных? Поскольку при составлении набора порядок пирожных не играет роли, а сами пирожные могут повторяться, число способов составить набор это число сочетаний с повторениями по 4 из 6: При составлении набора из 4-х различных пирожных количество наборов определяется числом сочетаний без повторений по 4 из 6: Пример 5. Сколькими способами можно раздать 3 различных предмета 10 лицам, если а) каждому давать не более одного предмета; б) не ограничивать число предметов? а) Первый предмет можно дать одному из 10, второй предмет – одному из 9, третий – одному из 8, т.е. искомое число способов равно числу размещений из 10 по 3: б) Первый предмет можно дать любому из 10 лиц, второй – тоже любому из 10, третий – любому из 10, т.е. число способов равно числу размещений с повторениями из 10 по 3: Пример 6. Сколькими способами можно раздать 3 одинаковых предмета 10 лицам?
Распределение предметов можно осуществить так: выбрать из 10 человек 3 и дать им по одному предмету; можно выбрать из 10 человек 2 и дать одному 2 предмета, другому – один (и наоборот); затем выбрать одного из 10 и дать все три предмета. Тогда искомое число способов n равно:
Пример 7. Сколько делителей имеет число 800? Делителем числа
где
Разложим число 800 на простые множители: Пример 8. На автомобильной стоянке могут стоять в ряд 6 машин. Сколькими способами можно заполнить эту стоянку? Каждое из мест может быть или занято или свободно, значит, число способов заполнить каждое место равно 2. Тогда общее число способов заполнить стоянку равно: Задачи на непосредственное вычисление вероятности события Пример 1. В группе детского сада 30 детей. На утреннике 20 из них танцуют, 10 поют песни, а 5 и танцуют, и поют. Какова вероятность, что наугад взятый ребенок не принимает участия в празднике? Определим, сколько детей только танцуют: 20 – 5 = 15. Теперь найдем, сколько детей только поют: 10 – 5 = 5. Учитывая тех, кто и поет, и танцует, находим, что в представлении участвуют 15 + 5 + 5 = 25 детей. Следовательно, не принимают участия в празднике 5 детей. Тогда искомую вероятность можно найти, используя формулу классической вероятности:
Пример 2. Имеется 15 стандартных изделий и 5 бракованных. Из них наугад выбирают два изделия. Какова вероятность, что одно из них бракованное? Рассмотрим общую задачу. В партии из S изделий K бракованных. Найти вероятность того, что среди выбранных наугад для проверки r изделий ровно l окажутся бракованными. Число возможных способов взять r изделий из S равно
Тогда для нашей задачи имеем
Пример 3. Два друга условились встретиться в Москве у памятника Пушкину между 12 и 13 часами. Договорились, что тот, кто пришел первым, ждет 20 минут и уходит. Какова вероятность, что друзья встретятся?
Пример 4. Найти вероятность того, что сумма двух наугад взятых правильных положительных дробей не больше 1, а произведение не больше Обозначим через x и y правильные положительные дроби. Рассмотрим на плоскости точку с координатами (x, y). Так как дроби выбираются произвольно, то (x, y) есть точка, наудачу брошенная на плоскость. Согласно условию задачи все возможные исходы опыта определяются системой неравенств: Точки, удовлетворяющие этой системе, попадают в квадрат ОВАС. Благоприятствующие исходы определяются дополнительными условиями:
Этой системой неравенств в квадрате ОВАС задается заштрихованная область SA, отношение площади которой к площади квадрата равно искомой вероятности. Т.к. площадь квадрата равна 1, то вероятность численно равна площади SA. Сделаем рисунок. Уравнения границ:
Найдем абсциссы точек пересечения границ M и N. Для этого решим систему: Тогда площадь S 1 будет равна
Окончательно имеем:
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|