Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс




При разработке стохастической модели важное значение имеет определение характера случайного процесса . Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, …, n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения априорно известен.

В большинстве случаев, когда случайный процесс представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что обладает свойствами нормального (гауссовского) закона распределения. В этом случае говорят, что случайный процесс заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами.

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

В процессе моделирования часто возникает задача – определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений) . Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

. (2.7)

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени ).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.

материальная

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...