Методы устранения жёсткости воды
⇐ ПредыдущаяСтр 15 из 15 Для избавления от временной жёсткости необходимо просто вскипятить воду. При кипячении воды гидрокарбонаты разлагаются с образованием осадка среднего или основного карбоната: Ca(HCO3)2 = СаСО3 v+ СО2^+ Н2О, Mg(HCO3)2 = Мg2 (ОН) 2 СО3v +3СО2^ + Н2О, и жёсткость воды снижается. Умягчить жёсткую воду можно и обработкой воды различными химическими веществами. Так, временную (карбонатную) жёсткость можно устранить добавлением гашеной извести: При одновременном добавление извести и соды можно избавиться от карбонатной и некарбонатной жёсткости (известково-содовый способ). Карбонатная жёсткость при этом устраняется известью (см. выше), а некарбонатная - содой: Вообще, с постоянной жёсткостью бороться труднее. Кипячение воды в данном случае не приводит к снижению её жёсткости. Для борьбы с постоянной жёсткостью воды используют такой метод, как вымораживание льда. Необходимо просто постепенно замораживать воду. Когда останется примерно 10 % жидкости от первоначального количества, необходимо слить не замершую воду, а лёд превратить обратно в воду. Все соли, которые образую жёсткость, остаются в не замершей воде. Ещё один способ борьбы с постоянной жёсткостью - перегонка, т.е. испарение воды с последующей её конденсацией. Так как соли относятся к нелетучим соединениям, то они остаются, а вода испаряется. Также, чтобы избавиться от постоянной жёсткости, можно, например, к воде добавить соду: СаСl2 + Na2CO3 = CaCO3 v+ 2NaCl. Единственным же экономически оправданным методом удаления из воды солей жёсткости является применение ионообменных смол. Пропуская воду через слой специального реагента - ионообменной смолы (ионита), ионы кальция, магния или железа переходят в состав смолы, а из смолы в раствор переходят ионы Н+ или Na+, и вода умягчается, её жёсткость снижается.
Но такие методы, как замораживание и перегонка, пригодны только для смягчения небольшого количества воды. Промышленность имеет дело с тоннами. Поэтому для устранения жёсткости в данном случае принимается современный метод устранения - катионный. Этот способ основан на применении специальных реагентов - катионитов, которые загружаются в фильтры и при пропускании через них воды, заменяют катионы кальция и магния на катион натрия. Катиониты - синтетические ионообменные смолы и алюмосиликаты. Эффективным способом борьбы с высокой жёсткостью считается применение автоматических фильтров-умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде "жёсткие" соли заменяются на "мягкие", которые не образуют твердых отложений.
6. Метеорные воды ‑ это воды, которые выпадают в виде дождей и заполняют пористые и проницаемые породы верхних горизонтов разреза или просачиваются сквозь них вдоль поверхностей напластования, по системе трещин и проницаемым прослоям. Воды этого типа содержат связанный кислород, главным образом в виде углекислого газа. Они проникают в породы из вадозной зоны над зеркалом грунтовых вод, где кислород вступает в реакцию с сульфидами, образуя сульфаты, а двуокись углерода входит в состав карбонатов и бикарбонатов. 4. Отдельные дожди выделяются существенно большей кислотностью. В целом метеогенные воды являются тем звеном гидрологического круговорота, которое практически не участвует в минеральном обмене. Количество минеральных солей, теряемых океаном через атмосферу (около 0,6×109 т/год) несущественно. Эти соли представлены, в основнлом, хлоридом натрия и выпадают на поверхность континентов в их прибрежной зоне. Основная часть минерального состава метеорных вод формируется за счет солей тех же континентов. Среди этих солей преобладают сульфаты и гидрокарбонаты кальция. Поэтому метеогенные воды можно рассматривать, как начало формирования состава природных всех вод.
ОЗДОРОВИТЕЛЬНАЯ РОЛЬ РАСТЕНИЙ А) Шумозащитные свойства Зеленые насаждения снижают уровень городского шума, ослабляя звуковые колебания в момент прохождения их сквозь ветви, листву и хвою. Звук, попадая в крону, переходит как бы в другую среду, которая обладает значительно большим, чем воздух, акустическим сопротивлением, отражает и рассеивает до 74% и поглощает до 26% звуковой энергии. Летом насаждения снижают шум на 7—8 дБ, зимой — на 3—4 дБ. Снижение шума зависит от плотности кроны, густоты листвы, расположения насаждений по отношению к источнику шума и пропорционально ширине озелененной полосы. Наибольшей шумозащитной способностью отличаются клен, тополь, липа, вяз. Лучшие экранирующие свойства имеют смешанные насаждения, состоящие из деревьев и кустарников, особенно с хорошей горизонтальной и вертикальной сомкнутостью. Так, растительный экран из сосны черной и кустарника — кизильника обыкновенного, имеющий высоту 4,5 м и ширину 6 м, снижает уровень шума на 10—15 дБ. Шумозащитная эффективность растительных экранов зависит от размещения насаждений. Наиболее целесообразно размещать шумозащитные насаждения параллельно; при этом звуки на краях насаждений многократно отражаются и диффузно рассеиваются, что снижает силу шума. Способностью поглощать шум обладают также газоны и вертикальное озеленение. Травяной покров способен снизить шум на 6 дБ. Зеленая масса лиан, покрывающая стены, увеличивает их звукопоглощающую способность в 6—8 раз, а также способствует рассеиванию звуковой энергии. Б) Пылезащитные свойства Огромна роль зеленых насаждений в очистке воздуха городов. Задерживая потоки воздуха, растения поглощают содержащиеся в нем загрязняющие вещества — мелкодисперсные аэрозоли и твердые частицы, а также газообразные соединения, поглощаемые растениями или не включающимися в метаболизм растительными тканями. Процесс фильтрации воздуха можно разделить на две фазы: задерживание газов и аэрозолей и взаимодействие их с растениями.
Способность осаждать пыль объясняется строением кроны и листвы растений. Когда запыленный воздух проходит сквозь этот естественный лабиринт, происходит своеобразная фильтрация. Значительная часть пыли задерживается на поверхности листвы, веток и ствола. В) Климатообразующая роль Зеленые насаждения улучшают микроклимат городской территории, предохраняют от чрезмерного перегревания почву, стены зданий, тротуары, создают «комфортные условия» для отдыха на открытом воздухе. Основные поверхности города, состоящие из асфальта, бетона, металла, слабо отражают радиационную энергию солнца, что является причиной формирования специфического городского микроклимата. Растения, обладающие некоторой прозрачностью, часть лучистой энергии пропускают, часть поглощают, а остальное — отражают, причем отражение солнечной энергии листвой в несколько раз превышает отражение твердыми городскими поверхностями. Тень от деревьев и кустарников защищает человека от избытка прямого и отраженного солнечного тепла. Суммарная солнечная радиация под кроной отдельных видов деревьев почти в 9 раз меньше, чем на открытом пространстве. Гигиеническое значение зеленых насаждений состоит в том, что они значительно понижают тепловую радиацию, поэтому тепловые ощущения человека ближе к комфортным именно среди зелени. Г) Ионизация воздуха Зеленые насаждения улучшают электрогигиенические свойства атмосферы. В лесном воздухе степень ионизации кислорода в 2—3 раза больше, чем в морском или в воздухе над лугом, и в 5—6 раз больше, чем в городском. Степень, ионизации зависит от видового состава и возраста растений. Зеленые насаждения в три раза увеличивают количество легких отрицательно заряженных ионов и способствуют уменьшению количества тяжелых ионов. Тяжелые ионы возникают в результате соединения легких ионов с тяжелыми ядрами конденсации. Повышенная конденсация тяжелых ионов ухудшает видимость, отрицательно влияет на дыхание людей, вызывает усталость, а легкие отрицательные ионы улучшают деятельность сердечно-сосудистой системы. Как показали исследования, проведенные в Париже и его окрестностях, в 1 м3 городского воздуха содержится 86 положительных и 66 отрицательных легких ионов, а также 16700 тяжелых ионов, тогда как в пригородной зоне — 345 положительных и 283 отрицательных легких ионов и 1600 тяжелых.
Такие растения, как дуб красный и черешчатый, сосна обыкновенная, ель европейская, клен белый и серебристый, ива обыкновенная и белая, береза бородавчатая, белая акация, можжевельник казацкий, рябина обыкновенная, сирень обыкновенная, тополь черный и пирамидальный, туя западная, способствуют увеличению уровня ионизации воздуха — концентрация легких ионов под их кронами достигает 500 ионов/мл. В наибольшей степени улучшают ионный режим атмосферного воздуха смешанные хвойно-лиственные насаждения, а также многие цветущие растения.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|