Механические колебания и волны
Уравнение гармонического колебательного движения имеет вид , где x – смещение точки от положения равновесия, разное для разных моментов времени, А – амплитуда, Т – период, φ – начальная фаза, ν [Гц]=1 /Т – частота колебаний, ω [с-1]=2π /Т – круговая частота. Скорость и ускорение точки, совершающей колебание, определяются соотношениями Сила, под действием которой точка массой m совершает гармоническое колебание, , где k = 4π2 m / T, T = 2π . Здесь Т – период колебаний точки, совершающей колебания под действием силы F = – kx, где k – жесткость, численно равная силе, вызывающей смещение, равное единице. Кинетическая и потенциальная энергии колеблющейся точки имеют вид Полная энергия . Примером гармонических колебательных движений могут служить малые колебания маятника. Период колебаний математического маятника , где l – длина маятника, g – ускорение свободного падения. При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой и с начальной фазой, определяемой из уравнения , где А 1 и А 2 – амплитуды слагаемых колебаний, φ1 и φ2 – их начальные фазы. При сложении двух взаимно перпендикулярных колебаний одинакового периода уравнение траектории результирующего движения имеет вид . Если на материальную точку массой m, кроме упругой силы F = – kx, действует еще сила трения F тр = – r υ, где r – коэффициент трения и υ – скорость колеблющейся точки, то колебания точки будут затухающими. Уравнение затухающего колебательного движения имеет вид x = Ae -δ t sin(ω t +φ), где δ [с-1] – коэффициент затухания. При этом δ = r /2 m и , где ωо – круговая частота собственных колебаний. Величина æ = δ Т, называется логарифмическим декрементом затухания.
Если на материальную точку массой m, колебание которой дано в виде x 1 = Ae -δ t sinωо t, действует внешняя периодическая сила F = Fosinωt, то колебания точки будут вынужденными и уравнение ее движения примет вид x 2 = A sin(ω t +φ), где Резонанс наступает тогда, когда частота вынужденных колебаний ω связана с частотой собственных колебаний ωо и с коэффициентом затухания δ соотношением . При распространении незатухающих колебаний со скоростью с вдоль некоторого направления, называемого лучом, смещение любой точки, лежащей на луче и отстоящей от источника колебаний на расстоянии l, дается уравнением , где А – амплитуда колеблющихся точек, λ –длина волны. При этом λ= сТ. Две точки, лежащие на луче на расстояниях l 1 и l 2 от источника колебаний, имеют разность фаз . При интерференции волн максимум и минимум амплитуды получаются соответственно при условиях Здесь l 2 – l 1 – разность хода лучей. 5. 1. Точка совершает гармонические колебания с периодом Т = 6 с и начальной фазой, равной нулю. Определить, за какое время, считая от начала движения, точка сместится от положения равновесия на половину амплитуды. Ответ: 1 с. 5. 2. Точка совершает гармонические колебания по закону м. Определить: 1) период Т колебаний; 2) максимальную скорость υmax точки; 3) максимальное ускорение а max точки. Ответ:1) Т = 4 с; 2) υmax = 4,71 м/с, 3) а max =7,4 м/с2. 5. 3. Точка совершает гармонические колебания с амплитудой А =10 см и периодом Т =5 с. Определить для точки: 1) максимальную скорость; 2) максимальное ускорение. Ответ:1) 12,6 см/с; 2) 15,8 см/с2. 5. 4. Материальная точка совершает колебания согласно уравнению x = A sinω t. В какой-то момент времени смещение точки x 1 = 15см. При возрастании фазы колебаний в два раза смещение x 2 оказалось равным 24 см. Определить амплитуду А колебаний. Ответ: 25 см.
5. 5. Материальная точка совершает гармонические колебания согласно уравнению , м. Определить: 1) амплитуду колебаний; 2) период колебаний; 3) начальную фазу колебаний; 4) максимальную скорость точки; 5) максимальное ускорение точки; 6) через сколько времени после начала отсчета точка будет проходить через положение равновесия. Ответ:1) 2 см, 2) 2 с; 3) π/2; 4) 6,28 см/с; 5) 19,7 см/с2; 6) t = m, где m = 0, 1, 2,.... 5. 6. Материальная точка, совершающая гармонические колебания с частотой ν = 1 Гц, в момент времени t = 0 проходит положение, определяемое координатой х о = 5 см, со скоростью υо = 15 см/с. Определить амплитуду колебаний. Ответ: 5,54 см. 5. 7. Определить максимальные значения скорости и ускорения точки, совершающей гармонические колебания с амплитудой А = 3 см и периодом Т = 4 с. Ответ: υmax = 4,71 см/с2; а max = 7,4 см/с2. 5. 8. Тело массой m = 10 г совершает гармонические колебания по закону x = 0,1 cos (4π t + π/4) м. Определить максимальные значения: 1) возвращающей силы; 2) кинетической энергии. Ответ:1) 0,158 Н; 2) 7,89 мДж. 5. 9. Материальная точка массой m = 50 г совершает гармонические колебания согласно уравнению м. Определить: 1) возвращающую силу F для момента времени t = 0,5 с; 2) полную энергию E точки. Ответ:1) 78,5 мН; 2) 5,55 мДж. 5. 10.Материальная точка массой m = 20 г совершает гармонические колебания по закону x = 0,1cos(4π t + π/4) м. Определить полную энергию Е этой точки. Ответ: 15,8 мДж. 5. 11.Полная энергия Е гармонически колеблющейся точки равна 10 мкДж, а максимальная сила F max, действующая на точку, равна -0,5 мН. Написать уравнение движения этой точки, если период Т колебаний равен 4 с, а начальная фаза φ = π/6. Ответ: x = 0,04cos(), м. 5. 12.Определить отношение кинетической энергии Т точки, совершающей гармонические колебания, к ее потенциальной энергии П, если известна фаза колебания. Ответ: tg2(ω0 t + φ). 5. 13.Груз, подвешенный к спиральной пружине, колеблется по вертикали с амплитудой А = 8 см. Определить жесткость k пружины, если известно, что максимальная кинетическая энергия Т mах груза составляет 0,8 Дж. Ответ: 250 Н/м. 5. 14.Материальная точка колеблется согласно уравнению x = A cosω t, где А = 5 см и ω = π/12 с-1. Когда возвращающая сила F в первый раз достигает значения — 12мН, потенциальная энергия П точки оказывается равной 0,15 мДж. Определить: 1) этот момент времени t; 2) соответствующую этому моменту фазу ω t. Ответ:1) 4с; 2) π/3.
5. 15.Груз, подвешенный к спиральной пружине, колеблется по вертикали с амплитудой А = 6 см. Определить полную энергию E колебаний груза, если жесткость k пружины составляет 500 Н/м. Ответ: 0,9 Дж. 5. 16.Спиральная пружина обладает жесткостью k = 25 Н/м. Определить, тело какой массой m должно быть подвешено к пружине, чтобы за t = 1 мин совершалось 25 колебаний. Ответ: 3,65 кг. 5. 17.Если увеличить массу груза, подвешенного к спиральной пружине, на 600 г, то период колебаний груза возрастает в 2 раза. Определить массу первоначально подвешенного груза. Ответ: 0,2 кг. 5. 18.При подвешивании грузов массами m 1 = 600 г и m 2 = 400 г к свободным пружинам последние удлинились одинаково (l = 10 см). Пренебрегая массой пружин, определить: 1) периоды колебаний грузов; 2) какой из грузов при одинаковых амплитудах обладает большей энергией и во сколько раз. Ответ: 1) T 1 = Т 2 = 0,63 с; 2) груз большей массы, в 1,5 раза. 5. 19.Физический маятник представляет собой тонкий однородный стержень длиной 35 см. Определить, на каком расстоянии от центра масс должна быть точка подвеса, чтобы частота колебаний была максимальной. Ответ: 10,1 см. 5. 20.Однородный диск радиусом R = 20 см колеблется около горизонтальной оси, проходящей на расстоянии l = 15 см от центра диска. Определить период Т колебаний диска относительно этой оси. Ответ: 1,07 с. 5. 21.Тонкий обруч радиусом R = 50 см подвешен на вбитый в стену гвоздь и колеблется в плоскости, параллельной стене. Определить период Т колебаний обруча. Ответ: 2 с. 5. 22.Тонкий однородный стержень длиной l = 60 см может свободно вращаться вокруг горизонтальной оси, проходящей через верхний конец стержня. Стержень отклонили на угол αo = 0,01 рад и в момент времени t 0 = 0 отпустили. Считая колебания малыми, определить период колебаний стержня и записать функцию α(t). Ответ: 1,27 с, α(t) = 0,01 cos1,57π t рад. 5. 23.Тонкий однородный стержень длиной l = 60 см может свободно вращаться вокруг горизонтальной оси, отстоящей на расстоянии x = 15 см от его середины. Определить период колебаний стержня, если он совершает малые колебания. Ответ: 2,2 с.
5. 24.Математический маятник, состоящий из нити длиной l = 1 м и свинцового шарика радиусом r = 2 см, совершает гармонические колебания с амплитудой А = 6 см. Определить: 1) скорость шарика при прохождении им положения равновесия; 2) максимальное значение возвращающей силы. Плотность свинца ρ = 11,3 г/см3. Ответ:1) 0,186 м/с; 2) 69,5 мН. 5. 25.Два математических маятника имеют одинаковые массы, длины, отличающиеся в n = 1,5 раза, и колеблются с одинаковыми угловыми амплитудами. Определить, какой из маятников обладает большей энергией и во сколько раз. Ответ: Маятник большей длины, в 1,5 раза. 5. 26.Два математических маятника, длины которых отличаются на Δ l = 16 см, совершают за одно и то же время один n 1 = 10 колебаний, другой — n 2 = 6 колебаний. Определить длины маятников l 1 и l 2. Ответ: l 1 = 9 см, l 2 = 25 см. 5. 27.Математический маятник длиной l = 50 см подвешен в кабине самолета. Определить период Т колебаний маятника, если самолет движется: 1) равномерно; 2) горизонтально с ускорением a = 2,5 м/с2. Ответ:1) 1,42 с; 2) 1,4 с. 5. 28.Математический маятник длиной l = 1 м подвешен к потолку кабины, которая начинает опускаться вертикально вниз с ускорением a 1 = g/4. Спустя время t 1 = 3 с после начала движения кабина начинает двигаться равномерно, а затем в течение 3 с тормозится до остановки. Определить: 1) периоды Т 1, Т 2, Т 3 гармонических колебаний маятника на каждом из участков пути; 2) период T 4 гармонических колебаний маятника при движении точки подвеса в горизонтальном направлении с ускорением а 4 = g/4. Ответ: Т 1 = 2,32 с, Т 2 = 2,01 с, Т 3= 1,79 с, Т 4 = 0,621 с. 5. 29.Два одинаково направленных гармонических колебания одинакового периода с амплитудами А 1 = 4 см и А 2 = 8 см имеют разность фаз φ = 45°. Определить амплитуду результирующего колебания. Ответ: 11,2 см. 5. 30.Амплитуда результирующего колебания, получающегося при сложении двух одинаково направленных гармонических колебаний одинаковой частоты, обладающих разностью фаз φ = 60°, равна А = 6 см. Определить амплитуду А 2 второго колебания, если A 1 = 5 cм. Ответ: 1,65 см. 5. 31.Определить разность фаз двух одинаково направленных гармонических колебаний одинаковых частоты и амплитуды, если амплитуда их результирующего колебания равна амплитудам складываемых колебаний. Ответ:120°. 5. 32.Разность фаз двух одинаково направленных гармонических колебаний одинакового периода Т = 4 с и одинаковой амплитуды А = 5 см составляет π/4. Написать уравнение движения, получающегося в результате сложения этих колебаний, если начальная фаза одного из них равна нулю. Ответ: , см.
5. 33.Складываются два гармонических колебания одного направления, описываемых уравнениями х 1 = 3cos2π t см и x 2 = 3соs(2π t + π/4) см. Определить для результирующего колебания: 1) амплитуду; 2) начальную фазу. Записать уравнение результирующего колебания и представить векторную диаграмму сложения амплитуд. Ответ: 1) 5,54 см; 2) π/8; , см. 5. 34.Частоты колебаний двух одновременно звучащих камертонов настроены соответственно на 560 и 560,5 Гц. Определить период биений. Ответ: 2 с. 5. 35.В результате сложения двух колебаний, период одного из которых t 1 = 0,02 с, получают биения с периодом Т б = 0,2 с. Определить период Т 2 второго складываемого колебания. Ответ: 22,2 мс. 5. 36.Складываются два гармонических колебания одного направления, имеющие одинаковые амплитуды и одинаковые начальные фазы, с периодами Т 1 = 2 с и Т 2 = 2,05 с. Определить: 1) период результирующего колебания; 2) период биения. Ответ: 1) 2,02 с; 2) 82 с. 5. 37.Результирующее колебание, получающееся при сложении двух гармонических колебаний одного направления, описывается уравнением вида x = A cos t cos 45 t (t — в секундах). Определить: 1) циклические частоты складываемых колебаний; 2) период биений результирующего колебания. Ответ:1) ω1 = 46 c-1, ω2 = 45 с-1; 2) Т = 6,28 с. 5. 38.Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = 3cosω t, см и у = 4cosω t, см. Определить уравнение траектории точки и вычертить ее с нанесением масштаба. Ответ: y = 4 х /3. 5. 39.Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = 3cos2ω t, см и у = 4cos(2ω t + π), см. Определить уравнение траектории точки и вычертить ее с нанесением масштаба. Ответ: у = –4 х /3. 5. 40.Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = A sin ω t и y = B cos ω t, где А, В и ω — положительные постоянные. Определить уравнение траектории точки, вычертить ее с нанесением масштаба, указав направление ее движения по этой траектории. Ответ: х 2/ А 2 + у 2/ В 2 = 1, по часовой стрелке. 5. 41.Точка участвует одновременно в двух гармонических колебаниях одинаковой частоты, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями х = A sin(ω t + π/2) и y = A sin ω t. Определить уравнение траектории точки и вычертить ее с нанесением масштаба, указав направление ее движения по этой траектории. Ответ: х 2 + у 2 = А 2, против часовой стрелки. 5. 42.Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = cos 2π t и у = cos π t. Определить уравнение траектории точки и вычертить ее с нанесением масштаба Ответ: 2 у 2 – х = 1. 5. 43.Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = A sinω t и у = A sin2ω t. Определить уравнение траектории точки и вычертить ее с нанесением масштаба. Ответ: у 2 = 4 х 2(1– х 2/ А 2). 5. 44.Период затухающих колебаний Т = 1 с, логарифмический декремент затухания Θ = 0,3, начальная фаза равна нулю. Смещение точки при t = 2 Т составляет 5см. Записать уравнение движения этого колебания. Ответ: x = 9,l· e -0,3 t cos2π t, см. 5. 45.Амплитуда затухающих колебаний маятника за t = 2 мин уменьшилась в 2 раза. Определить коэффициент затухания δ. Ответ: 5,78·10-3 с-1. 5. 46.Логарифмический декремент колебаний Θ маятника равен 0,01. Определить число N полных колебаний маятника до уменьшения его амплитуды в 3 раза. Ответ: 110. 5. 47.Амплитуда затухающих колебаний математического маятника за 1 мин уменьшилась в 3 раза. Определить, во сколько раз она уменьшится за 4 мин. Ответ: В 81 раз. 5. 48.Начальная амплитуда затухающих колебаний маятника а o = 3 см. По истечении t 1 = 10 с A 1 = 1 см. Определить, через сколько времени амплитуда колебаний станет равной А 2 = 0,3 см. Ответ: 21 с. 5. 49.Тело массой m = 0,6 кг, подвешенное к спиральной пружине жесткостью k = 30 Н/м, совершает в некоторой среде упругие колебания. Логарифмический декремент колебаний Θ = 0,01. Определить: 1) время t, за которое амплитуда колебаний уменьшится в 3 раза; 2) число N полных колебаний, которые должна совершить гиря, чтобы произошло подобное уменьшение амплитуды. Ответ: 1) 97,6 с; 2) 110. 5. 50.При наблюдении затухающих колебаний выяснилось, что для двух последовательных колебаний амплитуда второго меньше амплитуды первого на 60 %. Период затухающих колебаний Т = 0,5 с. Определить: 1) коэффициент затухания δ; 2) для тех же условий частоту νo незатухающих колебаний. Ответ:1) δ=1,83с-1; 2) 2,02 Гц. 5. 51.Тело массой m = 100 г, совершая затухающие колебания, за τ = 1 мин потеряло 40 % своей энергии. Определить коэффициент сопротивления r. Ответ: 8,51 ·10-4 кг/с. 5. 52.За время, в течение которого система совершает N = 50 полных колебаний, амплитуда уменьшается в 2 раза. Определить добротность Q системы. Ответ: 227. 5. 53.Частота свободных колебаний некоторой системы ω = 65 рад/с, а ее добротность Q = 2. Определить собственную частоту ωo колебаний этой системы. Ответ: 67 рад/с. 5. 54.Определить резонансную частоту колебательной системы, если собственная частота колебаний νo = 300 Гц, а логарифмический декремент Θ = 0,2. Ответ: 300 Гц. 5. 55.Собственная частота νo колебаний некоторой системы составляет 500 Гц. Определить частоту ν затухающих колебаний этой системы, если резонансная частота νрез = 499 Гц. Ответ: 499,5 Гц. 5. 56.Период затухающих колебаний системы составляет 0,2 с, а отношение амплитуд первого и шестого колебаний равно 13. Определить резонансную частоту данной колебательной системы. Ответ: 4,97 Гц. 5. 57.Определить разность фаз Δφ колебаний двух точек, лежащих на луче и друг от друга на расстоянии Δ l = 1 м, если длина волны λ = 0,5м. Ответ: Δφ = 4π, точки колеблются в одинаковых фазах. 5. 58.Две точки лежат на луче и находятся от источника колебаний на расстояниях х 1 = 4 м и х 2 = 7 м. Период колебаний Т = 20 мс и скорость н распространения волны равна 300 м/с. Определить разность фаз колебаний этих точек. Ответ: Δφ =π, точки колеблются в противоположных фазах. 5. 59.Волна распространяется в упругой среде со скоростью υ = 150 м/с. Определить частоту н колебаний, если минимальное расстояние Δ x между точками среды, фазы колебаний которых противоположны, равно 0,75 м. Ответ: 100 Гц. 5. 60.Определить длину волны λ, если числовое значение волнового вектора k равно 0,02512 см-1. Ответ: 2,5 м. 5. 61.Звуковые колебания с частотой ν = 450 Гц и амплитудой А = 0,3 мм распространяются в упругой среде. Длина волны λ = 80 см. Определить: 1) скорость распространения волн; 2) максимальную скорость частиц среды. Ответ: 1) 360 м/с; 2) 84,8 см/с. 5. 62.Два когерентных источника колеблются в одинаковых фазах с частотой ν = 400 Гц. Скорость распространения колебаний в среде υ = 1 км/с. Определить при какой наименьшей разности хода будет наблюдаться: 1) максимальное усиление колебаний; 2) максимальное ослабление колебаний. Ответ:1) 2,5 м; 2) 1,25 м. 5. 63.Два когерентных источника посылают поперечные волны в одинаковых фазах. Периоды колебаний Т = 0,2 с, скорость распространения волн в среде υ = 800 м/с. Определить, при какой разности хода в случае наложения волн будет наблюдаться: 1) ослабление колебаний; 2) усиление колебаний. Ответ: 1) ±80(2 m +l), м (m = 0, 1, 2,...); 2) ± 160 m, м (m = 0, 1, 2,...). 5. 64.Два динамика расположены на расстоянии d = 0,5 м друг от друга и воспроизводят один и тот же музыкальный тон на частоте ν = 1500 Гц. Приемник находится на расстоянии l = 4 м от центра динамиков. Принимая скорость звука υ = 340 м/с, определить на какое расстояние от центральной линии параллельно динамикам надо отодвинуть приемник, чтобы он зафиксировал первый интерференционный минимум. Ответ: 90,7 см. 5. 65.Определить длину волны λ, если расстояние Δ 1 между первым и четвертым узлами стоячей волны равно 30 см. Ответ: 20 см. 5. 66.Для определения скорости звука в воздухе методом акустического резонанса используется труба с поршнем и звуковой мембраной, закрывающей один из ее торцов. Расстояние между соседними положениями поршня, при котором наблюдается резонанс на частоте ν = 2500 Гц, составляет l = 6,8 см. Определить скорость звука в воздухе. Ответ: 340 м/с.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|