Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классическое естествознание и его методология




Хронологически этот период, а значит, становление естество­знания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап меха­нистического естествознания (до 30-х гг. XIX в.) и этап зарожде­ния и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою

очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач.

Активное деятельностное отношение к миру требовало позна­ния его существенных связей причин и закономерностей, а зна­чит, резкого усиления внимания к проблемам самого познания и его форм, методов, возможностей, механизмов и т. п. Одной из ключевых проблем стала проблема метода. Укрепляется идея о возможности изменения, переделывания природы, на основе по­знания ее закономерностей, все более осознается практическая цен­ность научного знания («знание — сила»). Механистическое есте­ствознание начинает развиваться ускоренными темпами.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и нью­тоновскую, — связанные соответственно с двумя глобальными на­учными революциями, происходившими в XVI—XVII вв. и со­здавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учениея. Коперника (1473—1543). Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывав­шей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объек­тов, подчиняющихся определенным законам, и указал на ограни­ченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены не­подвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно. Он отрицал наличие центра Вселенной, отстаивал тезис о ее бесконечности и о бесчис­ленном количестве миров, подобных Солнечной системе.

Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую сту­пень развития механистического естествознания. В учении Г. Га­лилея (1564—1642) уже были заложены достаточно прочные ос-

новы нового механистического естествознания. В центре его на­учных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели боль­шое значение для становления механики как науки.

Исходным пунктом познания, по Галилею, является чувствен­ный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мыслен­ным экспериментированием, опирающимся на строгое количе­ственно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпо­сылках. Иначе говоря, опыт не может не предваряться определен­ными теоретическими допущениями, не может не быть «теорети­чески нагруженным».

Вот почему Галилей, в отличие от «чистого эмпиризма» Ф. Бэ­кона (при всем сходстве их взглядов), был убежден, что «фактуальные данные» никогда не могут быть даны в их «девственной первозданности». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете кото­рого они (факты) получают соответствующую интерпретацию. Та­ким образом, опыт — это очищенный в мысленных допущениях и идеализациях опыт, а не просто (и не только) простое описание фактов.

Галилей выделял два основных метода экспериментального исследования природы:

1. Аналитический («метод резолюций») — прогнозирование чув­ственного опыта с использованием средств математики, абст­ракций и идеализации. С помощью этих средств выделяются элементы реальности (явления, которые «трудно себе пред­ставить»), недоступные непосредственному восприятию (на­пример, мгновенная скорость). Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

2. Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые те­оретические схемы, которые применяются при интерпретации явлений, их объяснении.


Достоверное знание в итоге реализуется в объясняющей тео­ретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, кото­рая резко отлична от обыденного опыта.

Оценивая методологические идеи Галилея, В. Гейзенберг от­мечал, что «Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосред­ственно наблюдаемых фактов, а скорее, к проектированию экспе­риментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории»[48]. Гейзенберг выделяет две характерные черты нового ме­тода Галилея: а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены; б) со­поставление последних с математическими структурами, прини­маемыми в качестве законов природы.

Способ мышления Галилея исходил из того, что одни чув­ства без помощи разума не способны дать нам истинного понима­ния природы, для достижения которого нужно чувство, сопро­вождаемое рассуждением. Имея в виду прежде всего галилеев-ский принцип инерции, А. Эйнштейн и Л. Инфельд писали: «От­крытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в исто­рии человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу»[49].

Иоган Кеплер (1571—1630) установил три закона движения j планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточ­нил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я

стоял на плечах гигантов». Главный труд Ньютона — «Математи­ческие начала натуральной философии» (1687) — это, по выраже­нию Дж. Бернала, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирно­го тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.).

Кроме того, Ньютон — независимо от Лейбница — создал диф­ференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был авто­ром многих новых физических представлений — о сочетании кор­пускулярных и волновых представлений о природе света, об иерар-.хически атомизированной структуре материи, о механической при­чинности и др. Построенный Ньютоном фундамент, по свидетель­ству Эйнштейна, оказался исключительно плодотворным и до кон­ца XIX в. считался незыблемым.

Научный метод Ньютона имел целью четкое противопостав­ление достоверного естественнонаучного знания вымыслам и умо­зрительным схемам натурфилософии. Знаменитое его высказы­вание «гипотез не измышляю» было лозунгом этого противопос­тавления.

Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно на­ блюдаемыми;

3) понять управляющие этими процессами фундаментальные за­кономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

5) построить целостную теоретическую систему путем дедуктив­ного развертывания фундаментальных принципов, т. е. «прий­ти к законам, имеющим неограниченную силу во всем космо­се» (В. Гейзенберг);


6) «использовать силы природы и подчинить их нашим целям в

технике» (В.Гейзенберг).

С помощью этого метода были сделаны многае важные от­крытия в науках. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный «арсенал» са­мых различных методов. Это прежде всего наблюдение, экспери­мент, индукция, дедукция, анализ, синтез, математические ме­тоды, идеализация и др. Все чаще говорили о необходимости со­четания различных методов.

Сам Ньютон с помощью своего метода решил три кардиналь­ные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии и дал критику последней. («Физика, берегись метафизики!») Под натурфилософией Ньютон понимал «точную науку о природе», теоретико-математическое учение о ней. Во-вторых, разработал классическую механику как целостную систе­му знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эта­лоном научной теории вообще, сохранив свое значение до настоя­щего времени. В-третьих, Ньютон завершил построение новой ре­волюционной для того времени картины природы, сформулиро­вав основные идеи, понятия, принципы, составившие механичес­кую картину мира. При этом он считал, что «было бы желательно вывести из начал механики и остальные явления природы».

Основное содержание механической картины мира, создан­ной Ньютоном, сводится к следующим моментам.

1. Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и вре­мени, взаимосвязанных силами тяготения, мгновенно пере­дающимися от тела к телу через пустоту (ньютоновский прин­цип дальнодействия).

2. Согласно этому принципу любые события жестко предопре­делены законами классической механики, так что если бы су­ществовал, по выражению Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.

3. В механической картине мира последний был представлен со­стоящим из вещества, где элементарным объектом выступал атом, а все тела — как построенные из абсолютно твердых,

однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».

4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движу­щихся тел, свойства которых неизменны и независимы от са­мих тел, составляла основу механической картины мира.

5. Природа понималась как простая машина, части которой под­чинялись жесткой детерминации, которая была характерной особенностью этой картины.

6. Важная особенность функционирования механической карти­ны мира в качестве фундаментальной исследовательской про­граммы — синтез естественнонаучного знания на основе ре­дукции (сведения) разного рода процессов и явлений к меха­ническим.

Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологи­ческих и религиозных схоластических толкований. Она ориенти­ровала на понимание природы из нее самой, на познание есте­ственных причин и законов природных явлений.

Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограниченностей. Механистичность, метафизичность мышления Нью­тона проявляется, в частности, в его утверждении о том, что ма­терия — инертная субстанция, обреченная на извечное повторе­ние хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая не­достаточность своей картины мира, Ньютон вынужден был апел­лировать к идеям творения, отдавать дань религиозно-идеалисти­ческим представлениям.

Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике,

но потом — в других областях знаний. Освоение новых областей потребовало развития математического формализма ньютоновской теории и углубленной разработки ее концептуального аппарата.

Развитие многих областей научного познания в этот период определялось непосредственным воздействием на них идей меха­нической картины мира. Так, в эпоху господства алхимии Р. Бойль выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике. Бойль пред­лагал объяснить все химические явления исходя из представле­ний о движении «малых частиц материи» (корпускул).

Механическая картина мира оказывала сильное влияние и на развитие биологии. Так, Ламарк, пытаясь найти естественные при­чины развития организмов, опирался на вариант механической картины мира, включавший идею «невесомых». Он полагал, что именно последние являются источником органических движений и изменения в живых существах. Развитие жизни, по его мне­нию, выступает как «нарастающее движение флюидов», которое и было причиной усложнения организмов и их изменения. До­вольно сильным влияние механической картины мира было и на знание о человеке и обществе (см. об этом гл. VIII).

Однако по мере экспансии механической картины мира на но­вые предметные области наука все чаще сталкивалась с необходи­мостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической кар­тины мира. Она теряла свой универсальный характер, расщепля­ясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной.

Говоря о механической картине мира, необходимо отличать это понятие от понятия «механицизм». Если первое понятие обо­значает концептуальный образ природы, созданный естествозна­нием определенного периода, то второе — методологическую ус­тановку. А именно — односторонний методологический подход, основанный на абсолютизации и универсализации данной карти­ны, признании законов механики как единственных законов ми­роздания, а механической формы движения материи — как един­ственно возможной.

Успехи механической теории в объяснении явлений приро­ды, а также их большое значение для развития практики — для техники, для конструирования машин, для строительства, море­плавания, военного дела и т. п. и привели к абсолютизации меха­нической картины мира, которая стала рассматриваться в каче­стве универсальной.

Таким образом, естествознание рассматриваемого этапа было механистическим, поскольку ко всем процессам природы прила­гался исключительно масштаб механики. Стремление расчленить природу на отдельные «участки» и подвергать их анализу каждый по отдельности постепенно превращалось в привычку представ­лять природу состоящей из неизменных вещей, лишенных разви­тия и взаимной связи. Так сложился метафизический способ мыш­ления, одним из выражений которого и был механицизм как свое­образная методологическая доктрина.

Механицизм есть крайняя форма редукционизма. Редукцио­низм (лат. reductio — отодвигание назад, возвращение к прежне­му состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе зако­номерностей, свойственных низшим формам, т. е. сведены к по­следним (например, биологические явления — с помощью физи­ческих и динамических законов).

Само по себе сведение сложного к более простому в ряде слу­чаев оказывается плодотворным — например, применение мето­дов физики и химии в биологии. Однако абсолютизация принци­па редукции, игнорирование специфики уровней (т. е. того ново­го, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании.

Таким образом, небывалые успехи механики породили пред­ставление о принципиальной сводимости всех процессов в мире к механическим. «Поэтому в XIX в. механика прямо отождествля­лась с точным естествознанием. Ее задачи и сфера ее применяе­мости казались безграничными. Еще Больцман утверждал, что мы можем понять физический процесс лишь в том случае, если объясним его механически.

Первую брешь в мире подобных представлений пробила мак-свелловская теория электромагнитных явлений, дававшая мате­матическое описание процессов, не сводя их к механике»[50].

128

II. Этап зарождения и формирования эволюционных идей — с начала 30-х гг. XIX в. до конца XIX — начала XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпиричес­кий материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел глав­ным образом с двух сторон:_во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с активизацией иссле­дований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления.

Фарадей обнаружил взаимосвязь между электричеством и маг­нетизмом, ввел понятия электрического и магнитного полей, вы­двинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил тео­рию электромагнитного поля, предсказал существование элект­ромагнитных волн, выдвинул идею об электромагнитной приро­де света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Как писал А. Эйнштейн, «первый удар по учению Ньютона о движении как программе для всей теоретической физики нанес­ла максвелловская теория электричества...; наряду с материаль­ной точкой и ее движением появилась нового рода физическая реальность, а именно «поле»1.

Успехи электродинамики привели к созданию электромагнит­ной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электриче­ство и магнетизм объяснялись на основе одних и тех же законов
(законы Ампера, Ома, Био—Савара—Лапласа и др.). Поскольку
электромагнитные процессы не редуцировались к механическим, то стало формироваться убеждение в том, что основные законы мироздания — не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электриче­ство, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику.[51]

Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механистические представления о мире были существенно поколеблены и — будучи не в силах объяс­нить новые явления — механическая картина мира начала схо­дить с исторической сцены, уступая место новому пониманию физической реальности.

Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского гео­лога Ч. Лайеля (1797—1875) и французскими биологами Ж Б. Па-марком (1744—1829) иЖ. Кювье( 1769—1832).

Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерыв­ном изменении земной поверхности под влиянием постоянных геологических факторов. Он перенес нормативные принципы био­логии в геологию, построив здесь теоретическую концепцию, ко­торая впоследствии оказала влияние на биологию. Иначе говоря, принципы высшей формы он перенес (редуцировал) на познание низших форм. Ч. Лайель — один из основоположников актуали-стического метода в естествознании, суть которого, в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее — ключ к прошлому). Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это ме­тафизический, «плоскоэволюционный» подход.

Ж. Б. Ламарк создал первую целостную концепцию эволю­ции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в резуль­тате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теори­ей катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли за­вершается мировой катастрофой — поднятием и опусканием ма-

териков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях по­явились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.

Итак, уже в первые десятилетия XIX в. было фактически под­готовлено «свержение» метафизического в целом способа мыш­ления, господствовавшего в естествознании. Особенно этому спо­собствовали/при великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.

Теория клетки была создана немецкими учеными М. Шлей-деном и Т. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство проис­хождения и развития всех живых существ. Она утвердила общ­ность происхождения, а также единство строения и развития рас­тений и животных.

Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленц) показало, что призна­вавшиеся ранее изолированными так называемые «силы» — теп­лота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представ­ляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.

Теория Ч. Дарвина окончательно была оформлена в его глав­ном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные орга­низмы (включая человека) — не богом созданы, а являются ре­зультатом длительного естественного развития (эволюции) орга­нического мира, ведут свое начало от немногих простейших су­ществ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эво­люции — наследственность и изменчивость — и движущие фак­торы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых чело­веком домашних животных и культурных растений.

Впоследствии теорию Дарвина подтвердила генетика, пока­зав механизм изменений, на основе которых и способна рабо-

тать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном струк­туры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и до­стижения генетики.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...