И методов неклассической науки
Как было выше сказано, классическое естествознание XVII— XVIII вв. стремилось объяснить причины всех явлений (включая социальные) на основе законов механики Ньютона. В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль претендовали законы электромагнитных явлений. Была создана (Фа-радей, Максвелл и др.) электромагнитная картина мира. Однако в результате новых экспериментальных открытий в области строения вещества в конце XIX — начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил «каскад» научных открытий. В 1895—1896 гг. были открыты лучи Рентгена, радиоактивность (Беккерель), радий (М. и П. Кюри) и др. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу — электрон и понял, что электроны являются составными частями атомов всех веществ. Он предложил новую (электромагнитную) модель атомов, но она просуществовала недолго. В 1911 г. английский физик Э. Резерфорд в экспериментах обнаружил, что в атомах существуют ядра, положительно заряженные частицы, размер которых очень мал по сравнению с размерами атомов, но в которых сосредоточена почти вся масса атома. Он предложил планетарную модель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл а- и р-лучи, предсказал существование нейтрона. Но планетарная модель оказалась несовместимой с электродинамикой Максвелла. Немецкий физик М. Планк в 1900 г. ввел квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излуче- ния, названный его именем. Было установлено, что испускание и поглощение электромагнитного излучения происходит дискретно, определенными конечными порциями (квантами). Квантовая теория планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц. Названные открытия опровергли представления об атоме, как последнем, неделимом «первичном кирпичике» мироздания («материя исчезла»).
«Беспокойство и смятение», возникшие в связи с этим в физике, «усугубил» Н. Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома (1913). Он предполагал, что электроны, вращающиеся вокруг ядра по нескольким стационарным орбитам, вопреки законам электродинамики не излучают энергии. Электрон излучает ее порциями лишь при перескакивании с одной орбиты на другую. Причем при переходе электрона на более далекую от ядра орбиту происходит увеличение энергии атома, и наоборот. Будучи исправлением и дополнением модели Резерфорда, модель Н. Бора вошла в историю атомной физики как квантовая модель атома Резерфорда—Бора. Весьма ощутимый «подрыв» классического естествознания был осуществлен А. Эйнштейном, создавшим сначала специальную (1905), а затем и общую (1916) теорию относительности. В целом его теория основывалась на том, что в отличие от механики Ньютона, пространство и время не абсолютны. Они органически связаны с материей, движением и между собой. Сам Эйнштейн суть теории относительности в популярной форме выразил так: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы пространство и время». При этом четырехмерное пространство-время, в котором отсутствуют силы тяготения, подчиняется соотношениям неэвклидовой геометрии.
Таким образом, теория относительности показала неразрывную связь между пространством и временем (она выражена в едином понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его пространственно-временными формами существования — с другой. Определение пространственно-временных свойств в зависимости от особенностей материального движения («замедление» времени, «искривление» пространства) выявило ограниченность представлений классической физики об «абсолютном» пространстве и времени, неправомерность их обособления от движущейся материи. Как писал сам Эйнштейн, нет более банального утверждения, что окружающий нас мир представляет собой четырехмерный пространственно-временной континуум. В связи со своим фундаментальным открытием Эйнштейн произнес знаменитые слова: «Прости меня, Ньютон, — понятия, созданные тобой, и сейчас остаются ведущими в нашем физическом мышлении, хотя мы теперь знаем, что если мы будем стремиться к более глубокому пониманию взаимосвязей, то мы должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта»[52]. В 1924 г. было сделано еще одно крупное научное открытие. Французский физик Луи дв Бройль высказал гипотезу о том, что частице материи присуще и свойства волны (непрерывность), и дискретность (квантовость). Тогда, отмечал автор гипотезы, становилась понятной теория Бора. Вскоре, уже в 1925—1930 гг. эта гипотеза была подтверждена экспериментально в работах Шре-дингера, Гейзенберга, Борна и других физиков. Это означало превращение гипотезы де Бройля в фундаментальную физическую теорию — квантовую механику. Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами. Один из создателей квантовой механики, немецкий физик В. Гейзенберг сформулировал соотношение неопределенностей (1927). Этот принцип устанавливает невозможность — вследствие противоречивой, корпускулярно-волновой природы микрообъектов — одновременно точного определения их координаты и импульса (количества движения). Принцип неопределенности стал одним из фундаментальных принципов квантовой механики. В философско-методологическом отношении данный принцип есть объективная характеристика статистических (а не динамических) закономерностей движения микрочастиц, связанная с их корпус-
кулярно-волновой природой. Принцип неопределенностей не «отменяет» причинность (она никуда не «исчезает»), а выражает ее в специфической форме — в форме статистических закономерностей и вероятностных зависимостей. Все вышеназванные научные открытия кардинально изменили представление о мире и его законах, показали ограниченность классической механики. Последняя, разумеется, не исчезла, но обрела четкую сферу применения своих принципов — для характеристики медленных движений и больших масс объектов мира. В нашу задачу не входит подробный анализ величайших достижений естествознания неклассического периода. Укажем лишь некоторые важнейшие философско-методологически евыводы из них. 1. Возрастание роли философии в развитии естествознания и других наук. Это обстоятельство всегда подчеркивали настоящие творцы науки. Так, М. Борн говорил, что философская сторона науки интересовала его больше, чем "специальные результаты. И это не случайно, ибо работа физика-теоретика «теснейшим образом переплетается с философией и что без серьезного знания философской литературы его работа будет впустую»[53]. Весь вопрос, однако, в том, какой именно философии ученый отдает предпочтение. В. Гейзенберг говорил, что физики-теоретики, хотят они этого или нет, но все равно руководствуются философией, «сознательно или неосознанно». Весь вопрос в том, каковы ее качество и содержание, ибо «дурная философия исподволь губит хорошую физику». Чтобы этого не происходило — ни в физике, ни в других науках — исследователи должны руководствоваться «хорошей» — строго научной философией. Однако — и на это обстоятельство справедливо обращал внимание создатель квантовой механики — «...ученый никогда не должен полагаться на какое-то единственное учение, никогда не должен ограничивать методы своего мышления одной-единственной философией»[54], даже если она диалектико-материалистическая. Абсолютизация последней, канонизация ее — такое же заблуждение, как и ее полное игнорирование.
2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения. Идея научного познания действительности в XVIII—XIX вв. было полное устранение познающего субъекта из научной картины мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необходимых для его описания сведений. Естествознание XX века показало неотрывность субъекта, исследователя от объекта, зависимость знания от методов и средств его получения. Иначе говоря, картина объективного мира определяется не только свойствами самого мира, но и характеристиками субъекта познания, его концептуальными, методологическими и иными элементами, его активностью (которая тем больше, чем сложнее объект). В. Гейзенберг был первым, кто произнес фразу о том, что в общем случае разделение субъекта и объекта его наблюдения невозможно. Формирование отчетливой философской позиции современного рационализма началось именно с квантовой механики, давшей первые наглядные и неопровержимые доказательства включенности человека в качестве активного элемента в единый мировой эволюционный процесс. После работ Вернадского создавалась реальная возможность нарисовать всю грандиозную картину мироздания как единого процесса самоорганизации от микромира до человека и Вселенной. И она нам представляется совсем по-новому и совсем не так, как она рисовалась классическим рационализмом. Вселенная — это не механизм, однажды заведенный Внешним Разумом, судьба которого определена раз и навсегда, а непрерывно развивающаяся и самоорганизующаяся система. А человек не просто активный внутренний наблюдатель, а действующий элемент системы. Развитие науки показало, что исключить субъективное вообще из познания полностью невозможно, даже там, где «Я», субъект играет крайне незначительную роль. С появлением квантовой механики возникла «философская проблема, трудность которой состоит в том, что нужно говорить о состоянии объективного мира, при условии, что это состояние зависит от того, что делает наблюдатель»[55]. В результате существовавшее долгое время представле- ние о материальном мире как о некоем «сугубо объективном», независимом ни от какого наблюдения, оказалось сильно упрощенным. На деле практически невозможно при построении теории полностью отвлечься от человека и его вмешательства в природу, тем более в общественные процессы.
Поэтому, строго говоря, любые явления нельзя рассматривать «сами по себе» в том смысле, что их познание предполагает присутствие субъекта, человека. Стало быть, не только в гуманитарных науках, но «и в естествознании предметом исследования является не природа сама по себе, а природа, поскольку она подлежит человеческому вопрошанию, поэтому и здесь человек опять-таки встречает самого себя»[56]. Без активной деятельности субъекта получение истинного образа предмета невозможно. Более того, мера объективности познания прямо пропорциональна мере исторической активности субъекта. Однако последнюю нельзя абсолютизировать, так же как и пытаться «устранить» из познания субъективный момент якобы «в угоду» объективному. Недооценка, а тем более полное игнорирование творческой активности субъекта в познании, стремление «изгнать» из процесса познания эту активность закрывают дорогу к истине, к объективному отражению реальности. Воспроизводя объект так, как он есть «в себе», в формах своей деятельности, субъект всегда выражает так или иначе свое отношение к нему, свой интерес и оценку. Так, несмотря на самые строгие и точные методы исследования, в физику, по словам М. Борна, проникает «неустранимая примесь субъективности». Анализ квантово-механических процессов невозможен без активного вмешательства в них субъекта-наблюдателя. Поскольку субъективное пронизывает здесь весь процесс исследования и в определенной форме включается в его результат, это дает «основание» говорить о неприменимости в этой области знания принципа объективности. Действительно, поведение атомных объектов «самих по себе» невозможно резко отграничить от их взаимодействий с измерительными приборами, со средствами наблюдения, которые определяют условия возникновения явлений. Однако развитие науки показало, что «исследование того, в какой мере описание физических явлений зависит от точки зрения наблюдателя, не только не внесло никакой путаницы или усложнения, но, наоборот, оказалось неоценимой путеводной нитью при разыскании основных физических законов, общих для всех наблюдений»[57]. 3. У крепление и расширение идеи единства природы, повышение роли целостного и субстанциального подходов. Стремление выйти из тех или иных односторонностей, выявить новые пути понимания целостной структуры мира — важная особенность научного знания. Так, сложная организация биологических или социальных систем немыслима без взаимодействия ее частей и структур — без целостности. Последняя имеет качественное своеобразие на каждом из структурных уровней развития материи. При этом к «целостной реальности» относится не только то, что видно невооруженным глазом — живые системы (особи, популяции, виды) и социальные объекты разных уровней организации. Как писал выдающийся математик Г. Вейль, «...целостность не является отличительной чертой только органического мира. Каждый атом уже представляет собой вполне определенную структуру; ее организация служит основой возможных организаций и структур самой высокой сложности»[58]. Развитие атомной физики показало, в частности, что объекты, называвшиеся раньше элементарными частицами, должны сегодня рассматриваться как сложные многоэлементные системы. При этом «набор» элементарных частиц отнюдь не ограничивается теми частицами, существование которых доказано на опыте. Субстанциальный подход, т. е. стремление свести все изменчивое многообразие явлений к единому основанию, найти их «первосубстанцию», — важная особенность науки. Попытки достигнуть единого понимания, исходящего из единого основания, намерение охватить единым взором крайне разнородные явления и дать им единообразное объяснение не беспочвенны и не умозрительны. Так, физика исходит из того, что «...в конечном счете природа устроена единообразно и что все явления подчиняются единообразным законам. А это означает, что должна существо- вать возможность найти в конце концов единую структуру, лежащую в основе разных физических областей»[59]. Это стремление к всеохватывающему объединению, попытки истолковать все физические и другие явления с единой точки зрения, понять природу в целом пронизывают всю историю науки. Все ученые, исследующие объективную действительность, хотят постигнуть ее как целостное, развивающееся единство, понять ее «единый строй», «внутреннюю гармонию». Для творцов теории относительности и квантовой физики было характерно «стремление выйти из привычной роли мысли и вступить на новые пути понимания целостной структуры мира..., стремление к цельному пониманию мира, к единству, вмещающему в себя напряжение противоположностей»[60]. Последнее обстоятельство наиболее четко было выражено в принципе дополнительности Н. Бора. История естествознания — это история попыток объяснить разнородные явления из единого основания. Сейчас стремление к единству стало главной тенденцией современной теоретической физики, где фундаментальной задачей является построение единой теории всех взаимодействий, известных сегодня: электромагнитного, слабого, сильного и гравитационного. Общепризнанной теории Великого объединения пока нет. Однако «Теория Всего» в широком смысле не может быть ограничена лишь физическими явлениями. И это хорошо понимают широко мыслящие физики. 4. Формирование нового образа детерминизма и его «ядра» — причинности. История познания показала, что детерминизм есть целостное формообразование и его нельзя сводить к какой-либо одной из его форм или видов. Классическая физика, как известно, основывалась на механическом понимании причинности («лапласовский детерминизм»). Становление квантовой механики выявило неприменимость здесь причинности в ее механической форме. Это было связано с признанием фундаментальной значимости нового класса теорий — статистических, основанных на вероятностых представлениях. Тот факт, что статистические теории включают в себя неоднозначность и неопределенность, некоторыми философами и учеными был истолкован как крах детерминизма вообще, «исчезновение причинности». В основе данного истолкования лежал софистический прием: отождествление одной из форм причинности — механистического детерминизма — с детерминизмом и причинностью вообще. При этом причина понималась как чисто внешняя сила, воздействующая на пассивный объект, абсолютизировалась ее низшая — механическая — форма, причинность как таковая смешивалась с «непререкаемой предсказуемостью». «Так смысл тезиса о причинности постепенно сузился, пока наконец не отождествился с презумпцией однозначной детерминированности событий в природе, а это в свою очередь означало, что точного знания природы или определенной ее области было бы — по меньшей мере в принципе — достаточно для предсказания будущего»[61]. Такое понимание оказалось достаточным только в ньютоновской, но не в атомной физике, которая с самого начала выработала представления, по сути дела не соответствующие узкоинтерпретированному понятию причинности. Как доказывает современная физика, формой выражения причинности в области атомных объектов является вероятность, поскольку вследствие сложности протекающих здесь процессов (двойственный, корпускулярно-волновой характер частиц, влияние на них приборов и т. д.) возможно определить лишь движение большой совокупности частиц, дать их усредненную характеристику, а о движении отдельной частицы можно говорить лишь в плане большей или меньшей вероятности. Поведение микрообъектов подчиняется не механико-динамическим, а статистическим закономерностям, но это не значит, что принцип причинности здесь не действует. В квантовой физике «исчезает» не причинность как таковая, а лишь традиционная ее интерпретация, отождествляющая ее с механическим детерминизмом как однозначной предсказуемостью единичных явлений. По этому поводу М. Борн писал: «Часто повторяемое многими утверждение, что новейшая физика отбросила причинность, целиком необоснованно. Действительно, новая физика отбросила или видоизменила многие традиционные идеи; но она перестала бы быть наукой, если бы прекратила поиски причин явлений»[62]. Этот вывод поддерживали многие крупные творцы науки и философии. Так, выдающийся математик и философ А. Пуанка- ре совершенно четко заявлял о том, что «наука явно детерминис-тична, она такова по определению. Недетерминистической науки не может существовать, а мир, в котором не царит детерминизм, был бы закрыт для ученых»[63]. Крупный современный философ и логик Г. X. фон Вригг считает несомненным фактом, что каузальное мышление как таковое «не изгоняется из науки подобно злому духу». Поэтому философские проблемы причинности всегда будут центральными и в философии, и в науке — особенно в теории научного объяснения. Однако в последнее время — особенно в связи с успешным развитием синергетики — появились утверждения о том, что «современная наука перестала быть детерминистической» и что «нестабильность в некотором отношении заменяет детерминизм» (И. Пригожий). Думается, это слишком категорические и «сильные» утверждения. 5. Глубокое внедрение в естествознание противоречия и как существенной характеристики его объектов, и как принципа их познания. Исследование физических явлений показало, что частица-волна — две дополнительные стороны единой сущности. Квантовая механика синтезирует эти понятия, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц. Притом проблема выбора в данных условиях между этими противоположностями постоянно воспроизводится в более глубокой и сложной форме. Таким образом, в квантовой механике все особенности микрообъекта можно понять только исходя из его корпускулярно-волновой природы. Природа микрочастицы внутренне противоречива (есть диалектическое противоречие), и соответствующее понятие должно выражать это объективное противоречие. Иначе оно не будет адекватно отражать свой объект, так как он есть в себе, а стало быть, будет выражать лишь часть истины, а не всю ее в целом. С достаточной определенностью проблему синтеза противоположных представлений, внутреннего единства противоположностей (волновых и квантовых свойств света) поставил А. Эйнштейн. Оправдалось глубокое научное предвидение творца теории относительности, который предсказывал, что внутреннее противоречие теории должно быть разрешено в ходе дальнейшего развития физического знания. Зафиксированная Эйнштейном полярность волновых и корпускулярных характеристик света привела его к вьюоду о необходимости синтеза данных противоположностей: «Следующая фаза развития теоретической физики даст нам теорию света, которая будет в каком-то смысле слиянием волновой теории свега с теорией истечения»[64]. Такой фазой и стала квантовая механика. В ходе дальнейшего развития квантовых представлений было обнаружено, что в процессе объяснения загадок атомных явлений противоречия не исчезают, не «устраняются» из теории. Наоборот, происходит их нарастание и обострение. Это свидетельствовало не о слабости, а о силе новых теоретических представлений, которые предстали не как «логические» противоречия (путаница мысли), а как такие, которые имеют объективный характер, отражают реальные противоречия, присущие самим атомным явлениям. «Удивительнейшим событием тех лет был тот факт, что по мере этого разъяснения парадоксы квантовой теории не исчезали, а наоборот, выступали во все более явной форме и приобретали все большую остроту... В это время многие физики были уже убеждены в том, что эти явные противоречия принадлежат к внутренней природе атомной физики»[65]. Попытки осознать причину появления противоречивых образов, связанных с объектами микромира, привели Н. Бора к формулированию принципа дополнительности. Согласно этому принципу, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий (например, частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как целостных образованиях. Изучение взаимодополнительных явлений требует взаимоисключающих экспериментальных установок. Оценивая великое методологическое открытие Бора, М. Борн писал: «Принцип дополнительности представляет собой совершенно новый метод мышления. Открытый Бором, он применим не только в физике. Метод этот приводит к дальнейшему освобож- 142 дению от традиционных методологических ограничений мышления, обобщая важные результаты»[66]. В связи с этим Борн отмечал, что атомная физика учит нас не только тайнам материального мира, но и новому методу мышления. 6. Определяющее значение статистических закономерностей по отношению к динамическим. В законах динамического типа предсказания имеют точно определенный, однозначный характер. Это было присуще классической физике, где «если мы знаем координаты и скорость материальной точки в известный момент времени и действующие на нее силы, мы можем предсказать ее будущую траекторию»[67]. Законы же квантовой физики — это законы статистического характера, предсказания на их основе носят не достоверный, а лишь вероятностный характер. «Квантовая физика отказывается от индивидуальных законов элементарных частиц и устанавливает непосредственно статистические законы, управляющие совокупностями. На базе квантовой физики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь, как это было в классической физике. Квантовая физика имеет дело только с совокупностями»[68]. Законы статистического характера являются основной характеристикой современной квантовой физики. Поэтому метод, применяемый для рассмотрения движения планет, здесь практически бесполезен и должен уступить место статистическому методу, законам, управляющим изменениями вероятности во времени. В. Гейзенберг подчеркивал, что «законы квантовой механики по необходимости имеют статистический характер... Парадоксальность того обстоятельства, что различные эксперименты выявляют то волновую, то корпускулярную природу атомной материи, заставляют формулировать статистические закономерности»4. Решающая роль последних в квантовой механики обусловлена как корпускулярно-волновым дуализмом, так и открытым Гейзенбер-гом соотношением неопределенностей. В свою очередь последнее он считал специфическим случаем более общей ситуации дополнительности. Развитие квантовой механики показало: а) Предсказания квантовой механики неоднозначны, они дают лишь вероятность того или иного результата. б) Причинность в лапласовском смысле нарушена, но в более точном квантово-механическом смысле она соблюдается. в) Причина вероятностного характера предсказаний в том, что свойства микроскопических объектов нельзя изучать, отвлекаясь от способа наблюдения, В зависимости от него электрон проявляет себя либо как волна, либо как частица, либо Таким образом, огромный прогресс наших знании о строении и эволюции материи, достигнутый естествознанием, начиная со второй половины XIX в., во многом и решающем обусловлен методами исследований, опирающимися на теорию вероятностей. Поэтому везде, где наука сталкивается со сложностью, с анализом сложно-организованных систем, вероятность приобретает важнейшее значение. 7. Кардинальное изменение способа (стиля, стуктуры) мышления, вытеснение метафизики диалектикой в науке. Эту сторону, особенность неклассического естествознания подчеркивали выдающиеся его представители. Так, Гейзенберг неоднократно говорил о границах механического типа мышления, о недостаточности ньютоновского способа образования понятий, о радикальных изменениях в основах естественнонаучного мышления, указывал на важность требований об изменении структуры мышления. Он отмечал, что, во-первых, введению нового, диалектического в своей сущности, мышления «нас вынуждает предмет, что сами явления, сама природа, а не какие-либо человеческие авторитеты заставляют нас изменить структуру мышления»[69]. Новая структура мышлеьия позволяет добиться в науке большего, чем старая, т. е. новое оказывается более плодотворным. В-третьих, «фундаментальные сдвиги» в структуре мышления могут занять годы и даже десятилетия — что, кстати говоря, и происходит. Гейзенберг В. Шаги за горизонт. М., 1987. С. 198. Гейзенберг ставил вопрос о том, что наряду с обычной аристотелевской логикой, т. е. логикой повседневной жизни, существует неаристотелевская логика, которую он назвал квантовой. По аналогии с тем, что классическая физика содержится в квантовой в качестве предельного случая, «классическая, аристотелевская логика содержалась бы в квантовой в качестве предельного случая и во множестве рассуждений принципиально допускалось бы использование классической логики»[70]. Выдающийся ученый сетовал на то, что «физики до сих пор не применяют квантовую логику систематически», и был твердо уверен в том, что квантовая логика представляет собой более общую логическую схему, чем аристотелевская. Гейзенбергу в этом вопросе вторит французский философ и методолог науки Г. Башляр, который также ратует за введение в науку новой, неаристотелевской логики. Последнюю он рассматривает как логику, «вобравшую в себя движение», ставшую «живой» и развивающейся, в отличие от статичной аристотелевской логики. Процесс изменения в логике он связывает с изменениями в науке: статичный объект классической науки требовал статичной логики. Нестатичный (изменяющийся, развивающийся) объект неклассической науки приводит к необходимости введения движения в логику — как на уровне понятийного аппарата, так и логических связей. 8. Изменение представлений о механизме возникновения научной теории. (Об этой особенности см. гл. Ш, §4.) Что касается постнеклассической науки, то ей далее будет специально посвящена гл. УП.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|