По результатам прогноза по параболе численность занятого населения в ближайшие годы будет постепенно возрастать, достигая 64 – 65 млн. чел.
Задача №7.
Данные о стоимости экспорта () и импорта () Франции, млрд. $, приводятся за период с 1991 по 2000 г.
В уровнях рядов выявлены линейные тренды:
для экспорта - , а для импорта – .
По указанным трендам произведено выравнивание каждого ряда, то есть рассчитаны теоретические значения их уровней: и
Годы
Экспорт ()
Импорт ()
.
Предварительная обработка исходной информации привела к следующим результатам:
Mt
Zt
t
Mt
0,9606
0,8836
Zt
0,9606
0,8629
T
0,8836
0,8629
Итого
Средняя
266,6
260,7
5,5
35,579
30,845
2,872
Задание:
1. Для изучения связи рядов рассчитайте отклонения фактических значений каждого ряда от теоретических ( и );
2. Для оценки тесноты связи рассчитайте: 1) линейный коэффициент парной корреляции отклонений от линии тренда: ; 2) уровней рядов: и 3) коэффициент частной корреляции уровней: ; поясните их значения, укажите причины различий значений парных коэффициентов корреляции (пп. 1 и 2) и схожести коэффициентов парной корреляции отклонений и частной корреляции уровней (пп.1 и 3);
3. Постройте уравнение множественной регрессии с участием временной с
4. Проанализируйте полученные результаты.
Решение.
1. Изучение связи рядов выполним двумя способами, сравним их результаты и выберем из них правильный. Для оценки тесноты связи рядов через величины отклонений от оптимального тренда рассчитаем значения отклонений: и (см. табл. 1)
Таблица 1.
Годы
-31
-36
-14
-17
-5
-35
-4
-3
-21
-1
Итого
—
—
Средняя
266,6
—
260,7
—
—
283,6
248,8
Сигма
35,58
—
30,84
—
16,84
15,77
—
—
—
D
1265,84
—
951,41
—
283,60
248,80
—
—
—
Выполним расчёт коэффициента корреляции отклонений от трендов через коэффициент регрессии отклонений с1, и . Но для этого предварительно рассчитаем определители второго порядка по уравнению регрессии отклонений: .
В силу того, что свободный член уравнения регрессии отклонений равен нулю, вид уравнения будет отличаться от традиционного: . С изменением отлонений импорта от своего тренда на единицу отклонения экспорта от своего тренда изменятся в том же направлении на 0,8935 часть своей единицы. В дальнейшем коэффициент с1 используется для расчёта показателей тесноты связи двух рядов отклонений:
;
Выявлена тесная связь отклонений от трендов, которая означает, что на 70,0% вариация размеров отклонений по импорту детерминирует изменения по экспорту, а на 30% вариация размеров отклонений происходит под влиянием прочих факторов.
Второй вариант оценки связи двух рядов основан на традиционной оценке корреляции их уровней:
.
Данный подход к решению задачи предполагает традиционный расчёт определителей уравнения регрессии уровней, нахождение коэффициента регрессии а1 и далее с помощью и расчёт коэффициента корреляции. Информация для расчёта представлена в табл. 2.
Расчёт определителей дал следующие результаты:
Значения параметров регрессии: ; , а уравнение имеет вид:
.
Коэффициенты тесноты связи уровней составят: ; . Это значит, что в уровнях существует весьма тесная связь, при которой вариации импорта предопределяет 92,2% вариации экспорта.
Таблица 2.
Годы
Итого
Средняя
266,6
260,7
Сигма
35,58
30,84
D
1265,84
951,41
2. Однако, делать подобный вывод было бы глубоко ошибочно потому, что в уровнях и одного, и другого рядов выявлены устойчивые, статистически значимые линейные тренды. В подобных условиях выявленное взаимодействие уровней не является причинной зависимостью, а представляет собой ложную связь, вызванную наличием трендов схожей линейной формы. В силу того, что оба тренда сформированы под влиянием разного комплекса факторов, схожесть их формы могут создавать иллюзию связи рядов. Подобные соображения позволяют отказаться от результатов изучения связи уровней, содержащих тренд. В подобной ситуации пристального внимания заслуживает связь случайных отклонений от трендов. Именно этот подход позволяет выявить и количественно оценить истинную связь рядов.
В действительности связь рядов существует, оценивается она как тесная; то есть, в ней экспорт на 70% детерминирован вариацией импорта. Фактический F -критерий равен 18,9. Это больше табличного (F табл.= 5,32), что доказывает надёжность и значимость истинной связи рядов.
3. Для формализованного представления подобных зависимостей и использования моделей связи динамических рядов в прогнозных расчётах предлагается построить множественную регрессионную модель связи рядов, включая в неё в качестве обязательной составляющей фактор времени t. Речь идёт о построении модели следующего вида: . В данной задаче в уровнях обоих рядов присутствует линейный тренд. Поэтому включение в модель фактора времени позволит через коэффициент а2 отразить наличие линейного тренда в уровнях обоих рядов. Если в уровнях рядов представлены тренды иной, более сложной формы, тогда уравнение множественной регрессии должно через фактор времени отразить эту более сложную форму трендов.
Истинную силу и направление связи рядов отразит коэффициент регрессии а1 , а тесноту их связи оценит частный коэффициент корреляции: .
Используем для расчёта параметров множественной регрессии матрицу парных коэффициентов корреляции, представленную в исходных данных.
Для построения уравнения в стандартизованном масштабе: рассчитаем значения -коэффициентов:
Получено следующее уравнение: .
Его параметры позволяют сделать вывод о том, что влияния импорта на экспорт почти в четыре раза сильнее, чем влияние систематических факторов, формирующих линейный тренд:
По значениям -коэффициентов рассчитаем параметры множественной регрессии в естественной форме: ;
.
Уравнение имеет вид: . С увеличением импорта на 1 млрд. $ экспорт увеличивается на 0,895 млрд.$; под влиянием комплекса систематических факторов (которые условно обозначили через t) экспорт увеличивается в среднем за год на 2,65 млрд. $.
Оценку тесноты связи рядов, очищенную от влияния комплекса систематических факторов, даёт частный коэффициент корреляции:
; .
Как видим, получены результаты, совпадающие с оценками тесноты связи по отклонениям от лучших трендов, которыми, в данном случае, являются линейные тренды.
Использование динамической модели в прогнозе заключается в подстановке в её правую часть прогнозных значений фактора Z и фактора t. То есть,
Приложения
Приложение 1.
Таблица значений F-критерия Фишера
k2 -степени свободы остаточной дисперсии (k2 =n-m-1)