Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Идентификация объекта управления

 

В современных сложных объектах, как правило, выходной сигнал объекта зависит не от одного входного сигнала, как в случае с кривой разгона, а от нескольких входных сигналов, т.е. объект управления имеет сложное переплетение взаимосвязей входных и выходных сигналов.

 

Рис. 1. Схема объекта, состоящего из нескольких взаимосвязанных входных-выходных сигналов

 

Для идентификации таких сложных объектов используется метод регрессионного анализа с проведением активного эксперимента на базе теории математического планирования эксперимента.

Назначение этой теории – значительно сократить количество экспериментальных опытов и упростить расчеты, необходимые для получения уравнения взаимосвязи выходного сигнала с несколькими входными сигналами – уравнения регрессии.

Сокращение числа необходимых экспериментов в теории математического планирования эксперимента достигается за счет одновременного изменения всех входных сигналов (факторов), а упрощение расчетов получается за счет того, что изменение входных сигналов (факторов) нормируется, т.е. величины . Пусть  – зависит от 2-х входных факторов.

 


Рис. 2. Схема исследования объекта методом регрессионного анализа для двух входных сигналов (факторов)

 

Точка О – номинальный режим работы объекта. Нормализация происходит за счет того, что начало координат переносится в точку О на .

 

Рис. 3. Схема центрального плана полного факторного эксперимента для двух входных сигналов (факторов)

 

Здесь (рис. 3) изображен план проведения опытов для изучения зависимости . Число опытов равно 4=22 – полный факторный эксперимент; Для k входных факторов число опытов в факторном эксперименте: N=2k. При k=3 N=8; k=4, N=16 и т.д.

На приведенном выше рис. 3. изображен центральный (точка О – в центре) ортогональный полный факторный план эксперимента для 2-х входных факторов.

 

Таблица 1. Полный факторный эксперимент для k=2.

№ опыта
1 +1 +1
2 -1 +1
3 -1 -1
4 +1 -1

 

Свойство плана, когда, называется ортогональностью плана.

 

Таблица 2. Полный факторный эксперимент для k=3.

№ опыта
1 +1 +1 +1
2 -1 +1 +1
3 -1 -1 +1
4 +1 -1 +1
5 +1 +1 -1
6 -1 +1 -1
7 -1 -1 -1
8 +1 -1 -1

 

В полном факторном плане экспериментов число опытов резко возрастает в зависимости от числа входных факторов: k=4 N=16; k=5, N=32; k=6, N=64 опыта. Поэтому для сокращения числа опытов с минимальной потерей информации применяются сокращенные планы – дробные реплики. Если планы содержат половину опытов полного факторного эксперимента, то такой план носит название полуреплики.


Таблица 3. Пример полуреплики для k=4 (ПФЭ=16)

№ опыта
1 +1 +1 +1 +1
2 +1 -1 +1 -1
3 -1 +1 +1 -1
4 -1 -1 +1 +1
5 +1 +1 -1 -1
6 +1 -1 -1 +1
7 -1 +1 -1 +1
8 -1 -1 -1 -1

 

Используют также ¼ реплики от полного факторного эксперимента.

Уравнение взаимосвязи входного и выходного сигналов – уравнение регрессии – записывается в виде алгебраического полинома 1-ой и 2-ой степени в следующем виде:

1-ой степени:

 

xвых = b0 +b1x1+b2x2;

 

с учетом взаимодействия входных факторов для 2-х входных факторов x1 и x2:

 

xвых = b0 + b1x1 + b2x2 + b12x1 x2.

 

Полином второй степени – уравнение регрессии:

 

 

Естественно, это уравнение более точно описывает взаимосвязь xвых – функции отклика – с входными факторами (сигналами) объекта.

Задача идентификации объекта управления (ОУ) методом регрессивного анализа сводится к выбору порядка математической модели – уравнения регрессии – и определению коэффициентов b0, b1, b2, b12 и т.д. в этом уравнении регрессии. При определении этих коэффициентов используется метод наименьших квадратов, в котором определяется наименьшая сумма отклонений в квадрате (2-ой степени) между реально полученным в эксперименте выходным сигналом и выходным сигналом, рассчитанным (предсказанным) по уравнению регрессии, т.е. ищут минимум функции:

 

 

Минимум функции Ф достигается в том случае, когда первая частная производная (тангенс угла наклона к впадине) равна нулю, т.е.

 

.

 

Пример

 

 

Рассмотрим пример использования метода наименьших квадратов. Пусть выходной сигнал (функция отклика) зависит от одного фактора (входного сигнала). Активно проведено n экспериментов. Задана  и получена  – результатов экспериментов. Общий вид уравнения регрессии 1-го порядка для примера:


xвых = b0 + b1x1

 

Методом наименьших квадратов ищем минимум функции Ф:

 

 

Для получения минимума этой Ф приравниваем к нулю частные производные

 

.

 

Для удобства получения частных производных введем фиктивную переменную x0=1 и функцию Ф запишем:

 

 

x0=1 можно убрать. Тогда

 

 


Решая эту систему алгебраических уравнений (можно методом Крамера), находим:

 

 

Проверка идентичности математической модели – уравнения регрессии исследуемого объекта проводится по нескольким критериям адекватности и идентичности модели.

Поскольку результаты опытов в эксперименте заранее точно предсказать невозможно, то обработка и сами результаты связаны с неопределенностью или вероятностью. Вероятность изменяется в пределах: 0 – события быть не может, 1 – событие произойдет обязательно (день-ночь). При большом числе параллельных (одинаковые условия) опытов вероятность может быть задана в виде функции распределения вероятностей (рис. 4.):

 

Рис. 4. Схема нормального (гауссовского) закона распределения вероятностей

 

На практике чаще всего используется так называемое нормальное (гауссовское) распределение вероятностей.

Случайная величина () имеет несколько числовых характеристик, наиболее важные из которых – это математическое ожидание и дисперсия.

Математическое ожидание – это среднее взвешенное значение случайной величины

 

 

Дисперсия характеризует разброс значений случайной величины относительно ее математического ожидания.

 

.

 

Проверка значимости уравнения регрессии проводится по критерию Фишера или F-критерию. Проверка заключается в определении, значимо ли (больше ошибки измерения) полученное уравнение  отличается от уравнения . Для этого вычисляют дисперсию относительно среднего значения выходного сигнала:

 

,

 

где f1 – число степеней свободы,

 

.

 

А также остаточную дисперсию:


,

 

f2 – число степеней свободы.

Величину критерия Фишера (F-критерий) определяют по формуле:

 

 (должно быть).

 

Значимость коэффициентов bi уравнения регрессии определяют по t-критерию (критерии Стьюдента):

 

,

.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...