Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Восстановление очищенного трихлорсилана




Восстановление очищенного трихлорсилана и в результате этого получение поликристаллического кремния проводят в атмосфере водорода

SiHCl3(Г) + H2(Г) →Si(T) + 3HCl(Г) (5)

на поверхности разогретых кремниевых стержней — основах диаметром 4—8 мм (иногда до 30 мм), получаемых методом выращива­ния с пьедестала. В некоторых технологиях вместо цилиндрических стержней используются пластинчатые (толщиной 1—5 мм и шириной 30—100 мм) с большей площадью осаждения. Материалом для выращивания стержней служит высококачественный поликристаллический кремний. Поверхность стержней – основ подвергают ультра­звуковой очистке, травлению в смеси кислот (например, HF+ + HNO3), отмывке и сушке. К стержням – основам для получения вы­сококачественного поликристаллического кремния предъявляются высокие требования по чистоте: они должны иметь удельное сопро­тивление по донорам >700 Ом·см и по бору >5000 Ом·см.

Из стержней изготовляют электронагреватели (например, П-об­разной формы) и их нагрев осуществляют пропусканием электри­ческого тока. По мере роста диаметра стержней силу тока посте­пенно увеличивают.

Выбор условий водородного восстановления ТХС осуществляют на основе оптимальной взаимосвязи следующих параметров про­цесса:

· равновесной степени превращения SiHCl3 в Si, кристалли­ческой структуры получаемых стержней,

· температуры процесса,

· энергозатрат,

· мольного отношения Н2: SiHCl3,

· скорости осаждения кремния.

Оптимальными условиями процесса восстановления считают температуру 1100—1150 °С, мольное отношение Н2: SiHCl3 в пре­делах 5 —15, плотность подачи ТХС 0,004 моль/(ч ·см2). При тем­пературе стержней ниже оптимальной повышается степень превра­щения ТХС в тетрахлорид кремния и уменьшается выход кремния. Увеличение температуры приводит к существенному возрастанию энергозатрат. При оптимальном мольном отношении Н2: SiHCl3 = 5 —15 стержни имеют плотную мелкокристаллическую структуру и относительно ровную поверхность. За пределами этих отношений образуется неровная поверхность, структура стержней становится крупнокристаллической с включениями газовых пор, которые при последующем плавлении поликремния в процессе выращивания кристаллов приводят к бурлению и разбрызгиванию расплава.

Количество стержней, устанавливаемых в различных промыш­ленных реакторах, колеблется от 2 до 16, длина каждого стержня составляет до 2 м, конечный диаметр 150—250 мм. За счет взаимного нагрева стержней скорость осаждения кремния в многостержневых аппаратах выше, чем в двухстержневых; скорость роста диаметра стержней достигает 0,5 мм/ч, энергозатраты составляют 3000 кВт ·ч/кг.

Для повышения чистоты получаемого кремния производят тща­тельную очистку водорода, реакторы делают из специальных ста­лей, а также защищают их поверхность от взаимодействия с газовой средой путем введения дополнительных кварцевых (кремниевых) колпаков, отделяющих реакционный объем от стенок реактора. Хорошей защитой стенок реактора является покрытие их защитны­ми пленками, например полихлорсиланом.


Получение поликристаллических кремния из моносилана SiH4

Получение поликристаллических стержней кремния путем термического разложения моносилана SiH4 производится по аналогич­ной методике при температурах 1000 °С. Образующийся при раз­ложении водород SiH4(Г)->Si(T) + 2Н2(Г) обладает высокой сте­пенью чистоты и используется в сопутствующем производстве. По­лучаемый по этой технологии поликремний обладает более высокой степенью чистоты, чем кремний, получаемый восстановлением ТХС.

Извлечение кремния из SiCl4 и SiJ4 осуществляют восстановле­нием тетрахлорида кремния цинком либо термической диссоциацией тетраиодида.

Получаемые поликристаллические стержни перед использова­нием в процессах выращивания монокристаллов методом Чохраль­ского разламывают на удобные для загрузки в тигель куски или разрезают на мерные заготовки. Для процесса бестигельной зон­ной плавки стержни обрабатывают под нужный диаметр шлифовкой. Удаление поверхностных слоев, обогащенных примесями и газами, кроме того, предотвращает разбрызгивание кремния из расплавлен­ной зоны.

Современные технологические схемы получения поликристалли­ческого кремния включают в себя регенерацию и повторное ис­пользование всех компонентов и продуктов реакций восстановления (пиролиза), что улучшает технико-экономические показатели про­цесса, снижает себестоимость получаемого кремния, делает процесс экологически более чистым.

Рассмотренный процесс осаждения поликристаллического крем­ния используется также для получения на его основе поликристал­лических труб на углеродных оправках. Вследствие высокой чистоты и прочности эти трубы применяются вместо кварцевых в печах высокотемпературных процессов (свыше 1200 °С) в технологии полупроводниковых и микроэлектронных приборов. Кремниевые тру­бы не подвержены просаживанию или другой деформации в течение нескольких лет эксплуатации, несмотря на постоянное температур­ное циклирование между 900 и 1250 °С, тогда как кварцевые трубы имеют ограниченный срок службы при тех же процессах.

Потребление поликристаллического кремния электронной промышленностью составляет несколько тысяч тонн в год.

Для получения кремния высокой чисто­ты поликристаллические стержни подвергают кристаллизационной очистке методом зонной плавки в вакууме. При этом помимо крис­таллизационной очистки кремния от нелетучих примесей (преиму­щественно акцепторов) происходит существенная очистка его от летучих доноров за счет испарения их из расплавленной зоны. Так, после 15 проходов расплавленной зоны со скоростью 3 мм/мин, по­лучают монокристаллы кремния р-типа электропроводности с остаточной концентрацией примеси менее 1013 см-3 и удельным со­противлением (по бору) более 104 Ом*см.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...