Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Мета-алгоритм изобретения ТРИЗ и решение учебных математических задач




 

ТРИЗ является качественной теорией. Строгое соответствие моделей качественных теорий концепциям конструктивной математики очень упрощенно; можно сказать, что конструктивная математика имеет дело с качественными моделями, определяемыми следующим конструктивным способом [19]: 1) фиксируются исходные конструктивные объекты, определяемые, в частности, в виде примеров или образцов; 2) фиксируются правила (не обязательно аксиоматические), по которым строятся новые объекты из уже имеющихся; 3) фиксируются условия, налагаемые на исходные и построенные объекты и определяющие их конструктивность (например, осуществимость, полезность и эффективность).

Совокупность правил, определяющих построение новых конструктивных образов, называется алгоритмом. Обобщенные алгоритмы, на основе которых могут быть построены специализированные (ориентированные на определенное приложение, на определенный класс моделей) или детализированные (более точные) алгоритмы в ТРИЗ называются мета-алгоритмами [55].

Поэтому логично рассмотреть применение мета-алгоритма ТРИЗ в преподавании математики. Хотя школьная математика отлична от математики [48], но преемственность построения рассуждений сохраняется.

Рассмотрим обобщенную схему мета-алгоритма изобретения (рис. 9, Prof. Dr. Dr. Sc. techn. M. Orloff, Modern TRIZ Academy International, Berlin), а также упрощенный мета-алгоритм для решения некоторого класса учебных математических задач (рис. 10).

Тогда ход решения задачи можно уложить в 4 крупных этапа:

· диагностика (исследование задачи),

· редукция (построение модели задачи (алгебраической, аналитической и др.)),

· трансформация (выбор метода решения (вычисления) модели),

· верификация (проверка решения).

При этом данная схема совпадает с методикой организации решения учебной математической задачи соблюдением формально-логической схемы рассуждения «анализ – построение – доказательство – исследование» при решении геометрических задач на построение и т.п. [39, 82].

Переходы 1 и 3 требуют знания теории моделей и прикладных областей ее применения. Переход 2 требует умения строить и решать модели теории.

Пример 5. В двух цехах завода стоят станки двух типов. Первого типа 2 и 1 соответственно в первом и втором цехе, второго – 6 и 2. Определите среднею мощность, потребляемой станком каждого типа, если первый цех потребляет 340 киловатт-часов, второй – 130.

Решение представим в виде мета-алгоритма (рис. 11).

 


 

Пусть в двух цехах завода работает разное количество станков двух типов. Для точного определения средней мощности, потребляемой станком определенного типа, было решено воспользоваться имеющимися измерениями расхода электроэнергии по каждому цеху за сутки. На этапе диагностики проблемы было установлено количество станков каждого типа и данные по потреблению электроэнергии. На этапе редукции была построена система из двух линейных уравнений с двумя неизвестными. На этапе трансформации из двух простейших подходящих методов (метод исключения переменных и метод замены и подстановки переменных) выбрали последний. На этапе верификации путем прямой подстановки полученных значений искомых переменных в исходные уравнения убедились в правильности решения задачи.

Этот пример служит практической иллюстрацией абстрактной схемы, приведенной на рис. 10.

Пример 6. Что больше или ?

Решение представлено на рис. 12. Необходимо сравнить два числа. На этапе диагностики проблемы было установлено что непосредственное сравнение затруднительно. На этапе редукции была построена функция (обобщение по двум ее значениям). На этапе трансформации из методов доказательства монотонности функции выбрали наиболее подходящий с использованием производной. На этапе верификации доказали монотонность.

На этапе верификации путем исследования полученного решения убедились в правильности решения задачи.

 

 

Таким образом, при использовании мета-алгоритма для решения учебных математических задач появляется возможность наглядней представлять ход решения задачи.

Причем на этапах диагностики и редукции преимущественно используется анализ (проблемы решения), на этапах трансформации и верификации – синтез (идеи решения). Тем самым, используя при решении задачи мета-алгоритм, ребенок на уроках математики осознано учиться использовать разные способы мышления.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...