Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Ситуация как средство развития творческих способностей




 

Математика, особенно в школе, воспринимается как «нетворческий» предмет. О развитии творческих математических способностей на уроках математики можно прочитать в книгах Д. Пойа [64], Н. Тучнина [73] и др. Однако разговор в них идет именно о математическом творчестве, а сегодняшний социальный заказ общества предъявляет к личности, среди прочих качеств, умение действовать в нестандартных ситуациях [53], причем далеких от применения «явной» математики. Таким образом, речь идет о формировании такого качества личности как креативность, а не математическая креативность.

 

При решении текстовых задач рекомендуется от задачи переходить к модели задачи (алгебраической и аналитической), таким образом, дальнейшее решение заключается в решении модели [39] (рис. 2).

 

 

С точки зрения ТРИЗ это система (антропогенная) и к ней предъявляется требование: способствовать развитию креативности в процессе ее реализации. Опыт преподавания показывает сложность выполнения этого требования на практике. Кардинально преобразовывать данную систему не рационально (ее применения эффективно для достижения других дидактических целей математики, методика ее использования хорошо отработана) с одной стороны, а с другой преобразование необходимо для выполнения указанного требования к системе.

Сформулируем ИКР: система осталось неизменной, но требование стало выполняться. Используем инструмент ТРИЗ – вепольный анализ, который позволяет добавить в систему новое «вещество» Х, которое создает поле, отвечающее предлагаемому требованию (рис. 3).

 

 

 

Тогда, используя общий алгоритм решения задачи в ТРИЗ [5], элемент Х – это некоторая ситуация (рис. 4).

 

 

Именно переход от ситуации к задаче должен помочь развивать на уроках математики креативность, причем при использовании данной схемы отработанная методика по использованию модели перехода от задачи просто необходима для сохранения других дидактических целей.

Задача отличается от ситуации наличием четкой формулировки, условие содержит все необходимые данные в явном виде, метод решения зачастую известен и представляет собой цепочку формальных операций, правильный ответ определен однозначно. Ситуация[1] в свою очередь имеет неопределенное условие, разные подходы к решению, множества решений, благодаря чему она ближе к проблемным ситуациям, возникающим в жизни.

Основная цель практико-ориентированных (прикладных и практических) задач в школе на уроках математики (А. Азевич, Е. В. Величко, М. В. Крутихина, В. А. Петров, В. В. Пикан, Н. А. Терешин, А. Н. Тихонов, Ю. Ф. Фоминых, И. М. Шапиро и др.) заключается в осуществлении содержательной и методологической связи школьного курса математики с профессиональной составляющей образования, то есть способствуют развитию профессиональных умений, входящих в состав учебной и познавательной деятельности в процессе изучения математики, а не развитию креативности учащегося. Поэтому практико-ориентированные задачи нельзя в полной мере назвать ситуацией.

Пример 1. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре Р оно пропускало больше света.

Данный пример – практико-ориентированная задача, и её решение заключается в применении производной (задача на максимум и минимум). Четкое формулировка условия задачи, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций. Поэтому это задача, а не ситуация.

Пример 2. Как можно, не переплывая реки, измерить ее ширину [59, 60].

Данный пример – ситуация. Из условия не совсем ясно, чем можно пользоваться, какая река. Она имеет разные подходы к решению, причем в каждом подходе мы переходим к формулировке новой задачи (модели задачи).

1-ый способ. Используем прибор с тремя булавками на вершинах равнобедренного прямоугольного треугольника. Пусть требуется определить ширину АВ реки (рис. 5), стоя на том берегу, где точка В, и не перебираясь на противоположный.

 

Встав где-нибудь у точки С, держите булавочный прибор близ глаз так, чтобы, смотря одним глазом вдоль двух булавок, вы видели, как обе они покрывают точки В и А. Понятно, что, когда это вам удастся, вы будете находиться как раз на продолжении прямой АВ. Теперь, не двигая дощечки прибора, смотрите вдоль других двух булавок (перпендикулярно к прежнему направлению) и заметьте какую-нибудь точку D, покрываемую этими булавками, т.е. лежащую на прямой, перпендикулярной к АС. После этого воткните в точку С веху, покиньте это место и идите с вашим инструментом вдоль прямой CD, пока не найдете на ней такую точку Е (рис. 6), откуда можно одновременно покрыть для глаза булавкой b шест точки С, а булавкой а – точку А. Это будет значить, что вы отыскали на берегу третью вершину треугольника АСЕ, в котором угол С – прямой, а угол Е равен острому углу булавочного прибора, т.е. половине прямого. Очевидно, и угол А равен половине прямого, т.е. АС = СЕ.

Если вы измерите расстояние СЕ, например, шагами, вы узнаете расстояние АС, а отняв ВС, которое легко измерить, определите искомую ширину реки.

2-ой способ. Здесь также находят точку С на продолжении АВ и намечают при помощи булавочного прибора прямую CD под прямым углом к СА (рис. 7).

 

На прямой CD отмеряют равные расстояния СЕ и EF произвольной длины и втыкают в точки E и F вехи. Став затем в точке F с булавочным прибором, намечают направление FG, перпендикулярное к FC. Теперь, идя вдоль FG, отыскивают на этой линии такую точку H, из которой веха Е кажется покрывающей точку А. Это будет означать, что точки Н, Е и А лежат на одной прямой. Задача решена: расстояние FH равно расстоянию АС, от которого достаточно лишь отнять ВС, чтобы узнать, искомую ширину реки.

Другие способы разрешения ситуации, использующие признаки подобия треугольников, прямоугольный треугольник с углом в 30° можно посмотреть у Я. И. Перельмана [60].

При разрешении данной ситуации мы сначала переходили к задаче (модели задачи), формулировали ее на математическом языке, и только после чего ее решали. В первом способе мы ставили перед собой задачу: используя известный равнобедренный прямоугольный треугольник измерить длину отрезка АВ. Во втором способе: использовать признаки равенства треугольников для нахождения длины отрезка АВ. Рассмотрим другой пример.

Пример 3. Задача древних индусов (перевод В.К. Лебедева).

Над озером тихим,

С полфута размером, высился лотоса цвет.

Он рос одиноко. И ветер порывом

Отнес его в сторону. Нет

Воле цветка над водой,

Нашел же рыбак его ранней весной

В двух футах от места, где рос.

Итак, предложу я вопрос:

Как озера вода

Здесь глубока?

 

Обозначим (рис. 8) искомую глубину CD пруда через . Тогда, по теореме Пифагора легко найди искомую глубину.

 

 

Это задача, у неё четкое формулировка условия, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций. Попробуем превратить данную задачу в ситуацию.

Пример 4. Как можно измерить глубину реки с берега

Контрольное решение: рассмотрим ресурсы с точки зрения ТРИЗ, которыми мы располагаем. Текущая вода, берег, дно, человек. Упростим задачу. Как измерить с берега глубину водоема с неподвижной водой? Например, с берега озера. Тоже непросто, упростим еще. Как измерить глубину неподвижной воды у самого берега. А это равносильно измерению глубины колодца. Надо привязать к камню веревку или леску с поплавками, разнесенными, скажем, на 1 метр и бросить камень в колодец, или может помочь метод из примера 3. А как измерить глубину озера с берега? Во-первых, надо чтобы веревка была перпендикулярна поверхности воды. Как это сделать? На веревку с камнем навесим поплавки и бросим камень в нужное место озера, тогда будет видно, сколько поплавков утонуло, а сколько лежит на поверхности.

Введем следующее усложнение задачи – течение. Отметим место на берегу реки и перпендикулярно берегу бросим камень с веревкой и с поплавками на середину реки. Течение отнесет веревку с поплавками на расстояние В. Определим число погруженных поплавков K и рассчитаем по теореме Пифагора глубину реки .

В данном примере мы снова переходили от ситуации к формулировке задачи (модели задачи), уточняли ее, рассматривали используемые ресурсы. Вариантов решения у данного примера скорее очень много, они опираются на использование каких-либо свойств, причем некоторые решения нематематические.

Переход от задачи к ее модели для решения достаточно хорошо применяется в основной школе, а переход от ситуации к задаче применятся редко, «неосознанно», но как показывает первый опыт использования данного перехода [80], именно он может стать опорой для развития творческих способностей у учащихся на уроках математики в школе.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...