Фосфатная буферная система
Фосфатная буферная система составляет около 1-2% от всей буферной емкости крови и до 50% буферной емкости мочи. Она образована дигидрофосфатом (NaH2PO4) и гидрофосфатом (Na2HPO4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе обладает щелочными свойствами. В норме отношение HРO42– к H2РO4– равно 4: 1. При взаимодействии кислот (ионов водорода) с двузамещенным фосфатом натрия (Na2HPO4) натрий вытесняется, образуется натриевая соль дигидрофосфата (H2PO4–). В результате, благодаря связыванию введенной в систему кислоты, концентрация ионов водорода значительно понижается. HPO42– + Н-Анион > H2PO4– + Анион– При поступлении оснований избыток ОН– групп нейтрализуется имеющимися в среде Н+, а расход ионов Н+ восполняется повышением диссоциации NaH2PO4. H2PO4– + Катион-ОН > Катион+ + HPO42– + Н2О Основное значение фосфатный буфер имеет для регуляции pH интерстициальной жидкости и мочи. В моче роль его состоит в сбережении бикарбоната натрия за счет дополнительного иона водорода (по сравнению с NaHCO3) в составе выводимого NaH2PO4: Na2HPO4 + Н2СО3 > NaH2PO4 + NaНСО3 Кислотно-основная реакция мочи зависит только от содержания дигидрофосфата, т.к. бикарбонат натрия в почечных канальцах реабсорбируется. Белковая буферная система Буферная мощность этой системы составляет 5% от общей буферной емкости крови. Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам. В кислой среде подавляется диссоциация СООН-групп, а группы NH2 связывают избыток Н+, при этом белок заряжается положительно. В щелочной среде усиливается диссоциация карбоксильных групп, образующиеся Н+ связывают избыток ОН–-ионов и pH сохраняется, белки выступают как кислоты и заряжаются отрицательно.
Гемоглобиновая буферная система Наибольшей мощностью обладает гемоглобиновый буфер, который можно рассматривать как часть белкового. На него приходится до 30% всей буферной емкости крови. В буферной системе гемоглобина существенную роль играет гистидин, который содержится в белке в большом количестве. Изоэлектрическая точка гистидина равна 7,6, что позволяет гемоглобину легко принимать и легко отдавать ионы водорода при малейших сдвигах физиологической рН крови (в норме 7,35-7,45). Данный буфер представлен несколькими подсистемами: Пара ННb/ННbО2 является основной в работе гемоглобинового буфера. Соединение ННbО2 является более сильной кислотой по сравнению с угольной кислотой, HHb - более слабая кислота, чем угольная. Установлено, что ННbО2 в 80 раз легче отдает ионы водорода, чем ННb. Присоединение ионов водорода к остатку гистидина дезоксигемоглобина выглядит так: Работа гемоглобинового буфера неразрывно связана с дыхательной системой (к вопросу о значении пранаямы! - ALG) В легких после удаления СО2 (угольной кислоты) происходит защелачивание крови. При этом присоединение О2 к дезоксигемоглобину H-Hb образует кислоту ННbО2 более сильную, чем угольная. Она отдает свои ионы Н+ в среду, предотвращая повышение рН: Н-Hb + O2 > [H-HbO2] > НbO2 + Н+ В капиллярах тканей постоянное поступление кислот (в том числе и угольной) из клеток приводит к диссоциации оксигемоглобина НbO2 (Эффект Бора) и связыванию ионов Н+ в виде Н-Hb: НbO2+ Н+ > [H-HbO2] > Н-Hb + O2 Длительная стабилизация сдвигов рН Это так называемая физиологическая компенсация нарушений кислотно-основного состояния, которая происходит прежде всего за счет работы дыхательной системы и почек, и в меньшей степени - за счет печени и костной системы. Дыхательная система Легочная вентиляция обеспечивает удаление угольной кислоты, образованной при функционировании бикарбонатной буферной системы. По скорости реакции на изменение рН – это вторая система после буферных систем.
Дополнительная вентиляция легких приводит к удалению СО2, а значит и Н2СО3, и повышает рН крови, что компенсирует закисление межклеточной жидкости и плазмы крови продуктами метаболизма, в первую очередь, органическими кислотами. Сдвиги значений рО2 не являются сильно значимыми для изменения легочной вентиляции. Только снижение рО2 до 8 кПа в артериальной крови (норма 11,04-14,36 кПа или 83-108 мм рт.ст.) приводит к увеличению активности дыхательного центра. Более существенным фактором для активации дыхательной системы является концентрация ионов Н+. Накопление ионов Н+ в крови уже через 1-2 минуты вызывает максимальную (для данной их концентрации) стимуляцию дыхательного центра, повышая его активность до 4-5 раз, что приводит к снижению рСО2 до 10-15 мм рт.ст. И, наоборот, снижение кислотности крови понижает активность дыхательного центра на 50-75%, рСО2 при этом способен возрастать до 60 мм рт.ст и выше. Костная ткань Это наиболее медленно реагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+ и Na+ в обмен на протоны Н+. Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и связывание ионов НРО42– с Н+ с образованием дигидрофосфата, который уходит с мочой. Параллельно при снижении рН (закисление) происходит поступление ионов H+внутрь остеоцитов, а ионов калия – наружу. Печень Существенную, но пассивную роль в регуляции кислотно-основного состояния крови берет на себя печень, в которой происходит метаболизм низкомолекулярных органических кислот (молочная кислота и др). Кроме этого, кислые и щелочные эквиваленты выделяются с желчью. Почки Развитие почечной реакции на смещение кислотно-основного состояния происходит в течение нескольких часов. Регуляция концентрации ионов H+ осуществляется опосредованно, через потоки ионов Na+, движущихся по градиенту концентрации, и через перераспределение потоков ионов К+ и Н+, которые выходят из эпителиоцитов (секретируются) в обмен на ионы Na+.
Также для обеспечения электронейтральности внутри- и внеклеточной жидкости при реабсорбции ионов Na+ усиливается реабсорбция ионов Cl–, однако их не хватает, поэтому возникает необходимость в усилении реабсорбции и дополнительном синтезе ионов HCO3– (и вот тут-то как раз и играет свою роль сода - бикарбонат натрия NaHCO3. Если мы поставляем организму дополнительное количество ионов HCO3 посредством соды, мы существенно снижаем нагрузку с почек и помогаем им в работе - ALG) В почках активно протекают три процесса, связанных с уборкой кислых эквивалентов. Благодаря этим процессам рН мочи в состоянии снижаться до 4,5-5,2: 1. Реабсорбция бикарбонатных ионов HCO3–. 2. Ацидогенез – удаление ионов Н+ с титруемыми кислотами (в основном в составе дигидрофосфатов NaH2PO4). 3. Аммониегенез – удаление ионов Н+ в составе ионов аммония NH4+. Реабсорбция бикарбонат-ионов В проксимальных канальцах ионы Na+ мигрируют в цитозоль эпителиальных клеток в силу концентрационного градиента, который создается на базолатеральной мембране при работе фермента Na+,К+ АТФазы. В обмен на ионы Na+ эпителиоциты канальцев активно секретируют в канальцевую жидкость ионы водорода. Ионы HCO3– первичной мочи и секретируемые ионы Н+ образуют угольную кислоту Н2СО3. В гликокаликсе эпителиоцитов фермент карбоангидраза катализирует распад угольной кислоты на СО2 и воду. В результате возникает градиент концентрации углекислого газа между просветом канальцев и цитозолем и СО2 диффундирует в клетки. Внутриклеточная карбоангидраза использует пришедший СО2 и образует угольную кислоту, которая диссоциирует. Ионы НСО3– транспортируются в кровь, ионы Н+ – секретируются в мочу в обмен на ионы Na+. Таким образом, объем реабсорбции НСО3– полностью соответствует секреции ионов Н+. Процесс реабсорбции бикарбонат-ионов В проксимальных канальцах происходит реабсорбция 90% профильтрованного НСО3–. В петле Генле и дистальных канальцах реабсорбируется оставшееся количество карбонат-иона. Всего в почечных канальцах реабсорбируется более 99% от фильтруемых бикарбонатов.
(Из всего вышесказанного становится очевидным, что дополнительное поступление в систему бикарбонат-ионов благодаря приему бикарбоната натрия - соды - снижает нагрузку на эту сторону работы почек. Чем больше свободных бикарбонат-ионов имеется в системе, тем меньше зависимость организма от этого процесса их реабсорбции. Соответственно, почки не сильно напрягаются в этом плане, в результате чего мы на выходе имеем мочу с более щелочной реакцией! Известно же, что у новорожденных показатель мочи близок к 8...ALG) Ацидогенез В процессе ацидогенеза в сутки с мочой выделяется 10-30 ммоль кислот, называемых титруемыми кислотами. Фосфаты, являясь одной из этих кислот, играют роль буферной системы в моче. Роль этой системы состоит экскреции кислых эквивалентов без потерь бикарбонат-ионов за счет дополнительного иона водорода в составе выводимого NaH2PO4 (по сравнению с NaHCO3): Na2HPO4 + Н2СО3 > NaH2PO4 + NaНСО3 После того как бикарбонат натрия в почечных канальцах реабсорбируется, кислотность мочи зависит только от связывания ионов Н+с HPO42– и содержания дигидрофосфата. Процесс ацидогенеза в почечных канальцах Хотя в крови соотношение HРO42–: H2РO4– равно 4: 1, в клубочковом фильтрате оно меняется на 1: 9. Происходит это из-за того, что менее заряженный H2РO4– лучше фильтруется в клубочках. Связывание ионов Н+ ионами HРO42– на протяжении всего канальца приводит к увеличению количества H2РO4–. В дистальных канальцах соотношение может достигать 1: 50. Аммониегенез Аммониегенез происходит на протяжении всего почечного канальца, но более активно идет в дистальных отделах – дистальных канальцах и собирательных трубочках коркового и мозгового слоев. Глутамин и глутаминовая кислота, попадая в клетки канальцев, быстро дезаминируются ферментами глутаминаза и глутаматдегидрогеназа с образованием аммиака. Являясь гидрофобным соединением, аммиак диффундирует в просвет канальца и акцептирует ионы Н+ с образованием аммонийного иона. Источником ионов H+ первичной мочи в проксимальных отделах канальца является Na+, H+-антипорт. В дистальных отделах, в отличие от проксимальных, секреция ионов Н+ происходит с участием Н+-АТФазы, локализованной на апикальной мембране вставочных клеток.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|