Выбор транзисторов и расчет режима работы.
Введение.
Данное курсовое проектирование заключается в теоретической реализации многокаскадного усилителя по заданным параметрам. Проектирование следует начать с эскизного расчета усилителя. 1. Эскизный расчет усилителя (п.2). Выбрать транзистор выходного каскада (п.2.2). Рассчитать режим работы выходного каскада (п.2.2). Рассчитать требуемую глубину ОС F (п.2.3). Выбрать транзисторы предварительных каскадов и рассчитать коэффициент трансформации входного трансформатора n` (п.2.4). Рассчитать число каскадов усилителя N (п.2.4). Проверить выполнение условия стабильности коэффициента усиления и уточнить глубину ОС (п.2.5). 2. Построение и расчет цепи усиления (К – цепи) по постоянному току (п.3). Построить схему К – цепи усилителя (п.3.1, 3.2). Выбрать режим работы транзисторов предварительных каскадов и нанести выбранные токи и напряжения в цифрах на схему К – цепи (п.3.2). Рассчитать сопротивления резисторов схемы (п.3.2). Выполнить расчет нестабильности режима работы схемы (п.3.3). 3. Расчет коэффициентов усиления и параметров АЧХ (п.4.). Рассчитать коэффициенты усиления каскадов и общий коэффициент усиления. Уточнить число каскадов. Рассчитать частоты полюсов передаточной функции К – цепи. Уточнить типы транзисторов предварительных каскадов. 4. Расчет пассивных узлов структурной схемы усилителя (п.5). Выбрать и рассчитать входную и выходную цепи. Рассчитать элементы цепи ОС. 5. Расчет и построение характеристик передачи по петле ОС (п.6). Рассчитать высокочастотного обхода и асимптотические потери Ат (п.6.2). Построить ЛАХ Т(f) оптимального среза и сделать вывод о достаточной глубине ОС при выбранных запасах устойчивости (п.6.3).
6. Составление принципиальной схемы усилителя, выводы по результатам проектирования (п.7).
Задание параметров.
Вариант задания параметров берем из таблицы П.4.I. приложения 4 в методических указаниях по курсовому проектированию. Т.о. вариант № 34, Р2 = 60 мВт. R2 = 150 Ом. R1 = 150 Ом. Rвх F = 150 Ом. Rвых F = 150 Ом. KF = 60. SF = 0,5 дБ. fн = 6 кГц. fв = 0,28 МГц. kГF = 0,04%. E0 = -24В. tc maz = +40 0C.
Для более наглядоного вида приведем все выше заданные технические параметры в виде таблицы: Таблица № П.1.2.
Эскизный расчет. Структурная схема усилителя с одноканальной обратной связью.
Коэффициент усиления усилителя с глубокой одноканальной обратной связью (рис. 2.1) определяется параметрами пассивных цепей. . (2.1)
Структурная схема усилителя без цепи ОС (цепь усиления) показана на рис 2.2 Цепь усиления должна коэффициент усиления, достаточный для получения заданного значения КF и необходимо значения глубины ОС F. Цепь усиления содержит 2 – 4 каскада и функционально разделяется на выходной каскад и предварительные каскады усиления. Цепь ОС представляет собой пассивный 4-х полюсник с вносимым коэффициентом передачи В0. Нагрузкой цепи ОС является сопротивление входного шестиполюсника на зажимах 6-6 R`г. (рис. 2.1), а эквивалентным генератором с внутренним сопротивлением R``г – выходной шестиполюсник. (на зажимах 5-5).
Выбор транзисторов и расчет режима работы.
Расчет усилителя принято вести, начиная с выходного каскада. Он выполняется по однотактной трансформаторной схеме (рис. 2.3), которой транзистор включается по схеме с общим эмиттером, имеющей наибольшей коэффициент усиления мощности, и работает в режиме «А». Транзистор выходного каскада выбирается по двум основным условиям: Рк max ³ ан· Ркр max, , где Ркр max = (4…5)P2, ан = 1,4…2, . Здесь Ркр max – максимальное рабочее значение мощности, рассеиваемой на коллекторе транзистора, с учетом работы в режиме «А» и потерь мощности сигнала в выходной цепи; Рк max – максимально допустимая рассеивая мощность на коллекторе (берется из справочных данных на транзистор); ан -коэффициент запаса, введение которого предполагает использование транзисторов в облегченном режимах для повышения надежности; h21 min и h21 max – крайние значения коэффициента передачи тока из справочных данных; fT** – граничная частота коэффициента передачи тока в схеме с ОЭ; fh21 – частота среза по параметру h21.
Произведем расчет и сделаем выбор транзистора. Однако надо учитывать, что транзистор будем питать отрицательным зажимом источника питания, не так как показано на рисунке 2.3, а положительный зажим будем подавать на “землю”. Отсюда следует, что транзистор должен быть p-n-p, потому как если это будет n-p-n транзистор, то переходы будут смещены в обратном направлении, а значит ток по цепи коллектор – эмиттер течь не будет, в случае если это p-n-p транзистор переходы будут открыты и ток будет протекать.
Расчет: Р2 = 60 мВт; fв = 280 кГц; Ркр мах = 4·60 = 240 мВт; ан· Ркр мах =300·1,8 = 430 мВт. Рк мах = 1 Вт.
Рк мах ³ ан· Ркр мах. Из p-n-p транзисторов подходит КТ629А по мощности, проверяем частотные свойства. fh21 = 4,1 МГц > 3·0,28 = 0,84 МГц. Þ Подходит по всем условиям. Режим работы транзистора, определяемый током покоя коллектора Iк и постоянной составляющей напряжения на переходе Uкэ, должен быть таким, чтобы во внешней нагрузке обеспечивалось необходимая номинальная мощность сигнала и параметры предельных режимов работы транзистора не превышали максимально допустимых. По мощности и заданному напряжению источника питания Е0 определяем режим работы выходного транзистора:
Uкэ = а·Е0 = 0,63·Е0 = 15 В. (2.4). Iк = Ркр max/Uкэ = 240/15 = 16 мА. (2.5).
Где а = 0,6…0,8 – коэффициент, учитывающий, что часть напряжения источника питания упадет на резисторе цепи эмиттера по постоянному току. Должны выполняться следующие условия применительно к выбранному транзистору:
Uкэ max ³ 2Uкэ, 50 > 15·2 = 30; (2.6); iк max ³ ан·Iк, 1000 > 16·1,8 = 28,8; (2.7); tпр max £ (0,9…0,95)·tп max; (2.8).
Максимально допустимые значения Рк мах, iк max, Uкэ max от температуры перехода, определяемых величин тепловых сопротивлений: промежутков переход – окружающая среда (Rпс), переход – корпус (Rпк), корпус – окружающая среда (Rкс). При выборе транзистора желательно обойтись без внешнего теплосвода. В этом случае: tпр мах = tc мах + Rпс·Pkp max = 40 + 120·0,24 = 68,8 0С; (2.9).
Проверяем условие (2.8): 68,80С < 0,9·1350С = 121,50С. Все условия (2.6, 2.7, 2.8) были соблюдены, а так же в реальной схеме можно обойтись без теплосвода, так как условие (2.8) соблюдено. Приведем параметры выбранного транзистора в виде таблице: Таблица П.2.1.
По найденным значениям Uкэ и Iк находим оптимальное сопротивление нагрузки выходного транзистора для переменного тока.
Rн = x·Uкэ/xiIk = 15·0,8/0,8·16 = 937,5 Ом (2.13).
Где x - коэффициент использования коллекторного напряжения (для транзистора средней и высокой мощности), x = 0,7…0,8; xi – коэффициент использования коллекторного тока xi = 0,8…0,95. Вычислим коэффициент трансформации выходного (КПД трансформатора равен 1):
; (2.14). Проверим выполнение условие: мВт > 1,2·P2 = 1,2·60 = 70 мВт. (2.15) Условие выполнено, переходим к следующему пункту.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|