Метод Гаусса с выбором главного элемента
Методы решения систем линейных уравнений Решение системы линейных уравнений методом Гаусса
Задачи аппроксимации функции, а также множество других задач прикладной математики м вычислительной физики сводятся к задачам о решении систем линейных уравнений. Самым универсальным методом решения системы линейных уравнений является метод последовательного исключения неизвестных, называемый методом Гаусса. Для иллюстрации смысла метода Гаусса рассмотрим систему линейных уравнений:
(1)
Эту систему запишем в матричном виде:
(2)
Как известно, обе части уравнения можно умножить на ненулевое число, а также можно из одного уравнения вычесть другое. Используя эти свойства, постараемся привести матрицу системы (2) к треугольному виду, т.е. к виду, когда ниже главной диагонали все элементы – нули. Этот этап решения называется прямым ходом. На первом шаге прямого хода умножим первое уравнение на и вычтем из второго, тогда исключится переменная из второго уравнения. Затем, умножим первое уравнение на и вычтем из третьего, тогда система (2) преобразуется в систему вида: (3)
На втором шаге прямого хода из третьего уравнения исключаем , т.е. из третьего уравнения вычитаем второе, умноженное, на , что приводит систему (3) к треугольному виду (4)
(4)
Систему (4) переписываем в привычном виде:
(5)
Теперь, из системы (5) можем находить решение в обратном порядке, т.е. сначала находим из третьего уравнения , далее, подставляя во второе уравнение, находим . Подставляя и в первое уравнение системы (5), находим . Нахождение решения из системы (5) называют обратным ходом.
Теперь, на основе рассмотренного примера, составим общий алгоритм метода Гаусса для системы:
(6)
Метод Гаусса состоит из двух этапов: а) прямой ход – когда матрица системы (6) приводится к треугольному виду; б) обратный ход – когда последовательно вычисляются неизвестные в обратном порядке, т.е. в последовательности: . а) Прямой ход: для приведения системы (6) к треугольному виду, уравнения с ненулевыми коэффициентами при переменной переставляются таким образом, чтобы они были выше, чем уравнения с нулевыми коэффициентами . Далее, вычитаем первое уравнение, помноженное на , из второго уравнения, вычитаем первое уравнение, помноженное на , из третьего уравнения и т.д. В общем, вычитаем первое уравнение, помноженное на , из - го уравнения при , если . Вследствие этой процедуры, мы обнулили все коэффициенты при переменной в каждом из уравнений, начиная со второго, т.е. система (6) принимает вид:
(7)
Далее, применяем туже самую процедуру, для уравнений системы (7), начиная со второго уравнения, т.е. первое уравнение исключается из «игры». Теперь стараемся обнулить коэффициенты при переменной , начиная с третьего уравнения и т.д., пока не приведём систему к треугольному виду. Если , то система всегда приводима (теоретически) к треугольному виду. Общий алгоритм прямого хода можно представить в виде:
(8)
б) Обратный ход: Вычисляем неизвестные по формулам:
(9)
Замечание: для вычисления определителя системы можно использовать треугольную форму полученной матрицы, тогда определитель этой матрицы равен произведению диагональных элементов, т.е.
(10)
Метод Гаусса с выбором главного элемента
Метод Гаусса настолько универсален, что для некоторых систем получаются практически «плохие» результаты, поэтому разрабатываются различные хитрые выходы из ситуации. В случае, когда некоторые коэффициенты матрицы системы близки между собой, как известно относительные погрешности сильно возрастают при вычитании, поэтому классический метод Гаусса даёт большие погрешности. Чтобы обойти эту трудность, стараются в прямом ходе Гаусса выбрать то уравнение, у которого коэффициент при максимален и в качестве основного «игрока» выбирают именно это уравнение, тем самым обходя трудности вычитания близких чисел (если это возможно). Далее, когда нужно обнулить все коэффициенты переменной , кроме одного уравнения – этим особым уравнением опять выбирают то уравнение, у которого коэффициент при максимальный и т.д., пока не получим треугольную матрицу. Обратный ход происходит так же, как и в классическом методе Гаусса.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|